Banach空间中增生算子不动点问题的收敛性结果

IF 0.3 Q4 MATHEMATICS
C. L. Ejikeme, M. Abbas, D. F. Agbebaku
{"title":"Banach空间中增生算子不动点问题的收敛性结果","authors":"C. L. Ejikeme, M. Abbas, D. F. Agbebaku","doi":"10.3844/jmssp.2020.161.169","DOIUrl":null,"url":null,"abstract":"This paper deals with the approximate solutions of accretive maps in a uniformly convex Banach space. A weak convergence of a three - step iterative scheme involving the resolvents of accretive operators is proved. The main result is applied to a convex minimization problem in Hilbert spaces. In particular, the minimizer of a convex and proper lower semi-continuous function defined in a Hilbert space was obtained. Numerical illustration with graphical display of the convergence of the sequence obtained from the iterative scheme is also presented.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"46 1","pages":"161-169"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Results for Fixed Point Problems of Accretive Operators in Banach Spaces\",\"authors\":\"C. L. Ejikeme, M. Abbas, D. F. Agbebaku\",\"doi\":\"10.3844/jmssp.2020.161.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the approximate solutions of accretive maps in a uniformly convex Banach space. A weak convergence of a three - step iterative scheme involving the resolvents of accretive operators is proved. The main result is applied to a convex minimization problem in Hilbert spaces. In particular, the minimizer of a convex and proper lower semi-continuous function defined in a Hilbert space was obtained. Numerical illustration with graphical display of the convergence of the sequence obtained from the iterative scheme is also presented.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"46 1\",\"pages\":\"161-169\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmssp.2020.161.169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2020.161.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一致凸Banach空间中增生映射的近似解。证明了涉及加积算子解的三步迭代格式的弱收敛性。将主要结果应用于希尔伯特空间中的凸极小化问题。特别地,得到了在Hilbert空间中定义的凸和固有下半连续函数的极小值。文中还给出了数值说明,并用图形显示了由迭代格式得到的序列的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Results for Fixed Point Problems of Accretive Operators in Banach Spaces
This paper deals with the approximate solutions of accretive maps in a uniformly convex Banach space. A weak convergence of a three - step iterative scheme involving the resolvents of accretive operators is proved. The main result is applied to a convex minimization problem in Hilbert spaces. In particular, the minimizer of a convex and proper lower semi-continuous function defined in a Hilbert space was obtained. Numerical illustration with graphical display of the convergence of the sequence obtained from the iterative scheme is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信