无限树上过程的典型性和熵

IF 1.5 Q2 PHYSICS, MATHEMATICAL
'Agnes Backhausz, C. Bordenave, B. Szegedy
{"title":"无限树上过程的典型性和熵","authors":"'Agnes Backhausz, C. Bordenave, B. Szegedy","doi":"10.1214/21-aihp1233","DOIUrl":null,"url":null,"abstract":"Consider a uniformly sampled random $d$-regular graph on $n$ vertices. If $d$ is fixed and $n$ goes to $\\infty$ then we can relate typical (large probability) properties of such random graph to a family of invariant random processes (called\"typical\"processes) on the infinite $d$-regular tree $T_d$. This correspondence between ergodic theory on $T_d$ and random regular graphs is already proven to be fruitful in both directions. This paper continues the investigation of typical processes with a special emphasis on entropy. We study a natural notion of micro-state entropy for invariant processes on $T_d$. It serves as a quantitative refinement of the notion of typicality and is tightly connected to the asymptotic free energy in statistical physics. Using entropy inequalities, we provide new sufficient conditions for typicality for edge Markov processes. We also extend these notions and results to processes on unimodular Galton-Watson random trees.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Typicality and entropy of processes on infinite trees\",\"authors\":\"'Agnes Backhausz, C. Bordenave, B. Szegedy\",\"doi\":\"10.1214/21-aihp1233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a uniformly sampled random $d$-regular graph on $n$ vertices. If $d$ is fixed and $n$ goes to $\\\\infty$ then we can relate typical (large probability) properties of such random graph to a family of invariant random processes (called\\\"typical\\\"processes) on the infinite $d$-regular tree $T_d$. This correspondence between ergodic theory on $T_d$ and random regular graphs is already proven to be fruitful in both directions. This paper continues the investigation of typical processes with a special emphasis on entropy. We study a natural notion of micro-state entropy for invariant processes on $T_d$. It serves as a quantitative refinement of the notion of typicality and is tightly connected to the asymptotic free energy in statistical physics. Using entropy inequalities, we provide new sufficient conditions for typicality for edge Markov processes. We also extend these notions and results to processes on unimodular Galton-Watson random trees.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aihp1233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 5

摘要

考虑在$n$顶点上均匀抽样的随机$d$正则图。如果$d$是固定的,$n$转到$\infty$,那么我们可以将这种随机图的典型(大概率)属性与无限$d$ -规则树$T_d$上的一组不变随机过程(称为“典型”过程)联系起来。$T_d$上的遍历理论和随机正则图之间的这种对应关系已经在两个方向上证明是有成果的。本文继续对典型过程的研究,特别强调熵。我们研究了$T_d$上不变过程的微态熵的自然概念。它作为典型概念的定量细化,与统计物理中的渐近自由能密切相关。利用熵不等式为边缘马尔可夫过程的典型性提供了新的充分条件。我们还将这些概念和结果推广到非模高尔顿-沃森随机树上的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Typicality and entropy of processes on infinite trees
Consider a uniformly sampled random $d$-regular graph on $n$ vertices. If $d$ is fixed and $n$ goes to $\infty$ then we can relate typical (large probability) properties of such random graph to a family of invariant random processes (called"typical"processes) on the infinite $d$-regular tree $T_d$. This correspondence between ergodic theory on $T_d$ and random regular graphs is already proven to be fruitful in both directions. This paper continues the investigation of typical processes with a special emphasis on entropy. We study a natural notion of micro-state entropy for invariant processes on $T_d$. It serves as a quantitative refinement of the notion of typicality and is tightly connected to the asymptotic free energy in statistical physics. Using entropy inequalities, we provide new sufficient conditions for typicality for edge Markov processes. We also extend these notions and results to processes on unimodular Galton-Watson random trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信