指数网格和h矩阵

Niklas Angleitner, M. Faustmann, J. Melenk
{"title":"指数网格和h矩阵","authors":"Niklas Angleitner, M. Faustmann, J. Melenk","doi":"10.48550/arXiv.2203.09925","DOIUrl":null,"url":null,"abstract":". In [AFM21a], we proved that the inverse of the stiffness matrix of an h -version finite element method (FEM) applied to scalar second order elliptic boundary value problems can be approximated at an exponential rate in the block rank by H -matrices. Here, we improve on this result in multiple ways: (1) The class of meshes is significantly enlarged and includes certain exponentially graded meshes. (2) The dependence on the polynomial degree p of the discrete ansatz space is made explicit in our analysis. (3) The bound for the approximation error is sharpened, and (4) the proof is simplified.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":"5 1","pages":"21-40"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exponential meshes and H-matrices\",\"authors\":\"Niklas Angleitner, M. Faustmann, J. Melenk\",\"doi\":\"10.48550/arXiv.2203.09925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In [AFM21a], we proved that the inverse of the stiffness matrix of an h -version finite element method (FEM) applied to scalar second order elliptic boundary value problems can be approximated at an exponential rate in the block rank by H -matrices. Here, we improve on this result in multiple ways: (1) The class of meshes is significantly enlarged and includes certain exponentially graded meshes. (2) The dependence on the polynomial degree p of the discrete ansatz space is made explicit in our analysis. (3) The bound for the approximation error is sharpened, and (4) the proof is simplified.\",\"PeriodicalId\":10572,\"journal\":{\"name\":\"Comput. Math. Appl.\",\"volume\":\"5 1\",\"pages\":\"21-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.09925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.09925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

。在[AFM21a]中,我们证明了用于标量二阶椭圆型边值问题的h型有限元法的刚度矩阵逆可以用h -矩阵在块阶上以指数速率逼近。在这里,我们通过多种方式改进了这一结果:(1)网格的类别显着扩大,并包括某些指数级分级网格。(2)在我们的分析中明确了离散方差空间对多项式次p的依赖性。(3)锐化了近似误差的界;(4)简化了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential meshes and H-matrices
. In [AFM21a], we proved that the inverse of the stiffness matrix of an h -version finite element method (FEM) applied to scalar second order elliptic boundary value problems can be approximated at an exponential rate in the block rank by H -matrices. Here, we improve on this result in multiple ways: (1) The class of meshes is significantly enlarged and includes certain exponentially graded meshes. (2) The dependence on the polynomial degree p of the discrete ansatz space is made explicit in our analysis. (3) The bound for the approximation error is sharpened, and (4) the proof is simplified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信