NAD(P)H氧化酶在脱氢酶催化氧化中辅助因子再生的应用

Q2 Chemical Engineering
Gustav Rehn, Asbjørn Toftgaard Pedersen, John M. Woodley
{"title":"NAD(P)H氧化酶在脱氢酶催化氧化中辅助因子再生的应用","authors":"Gustav Rehn,&nbsp;Asbjørn Toftgaard Pedersen,&nbsp;John M. Woodley","doi":"10.1016/j.molcatb.2016.09.016","DOIUrl":null,"url":null,"abstract":"<div><p>Biocatalytic oxidations can offer clear advantages compared to chemically catalyzed oxidations in terms of chemo, regio and stereoselectivity as well as a reduced environmental impact. One of the most industrially important reactions is the oxidation of alcohols, which can be carried out using alcohol dehydrogenases. However, their effective use requires an effective regeneration of the oxidized nicotinamide cofactor (NAD(P)<sup>+</sup>), which is critical for the economic feasibility of the process. NAD(P)H oxidase is an enzyme class of particular interest for this cofactor regeneration since it enables the use of molecular oxygen as a substrate, generating either water or hydrogen peroxide as a by-product. The use of these enzymes is now gaining an increased interest, and several different enzymes of both types have been applied for proof-of-concept. In this review, we give an overview of the state-of-the-art, and discuss several important issues for future implementation in a production process.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"134 ","pages":"Pages 331-339"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.09.016","citationCount":"44","resultStr":"{\"title\":\"Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations\",\"authors\":\"Gustav Rehn,&nbsp;Asbjørn Toftgaard Pedersen,&nbsp;John M. Woodley\",\"doi\":\"10.1016/j.molcatb.2016.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biocatalytic oxidations can offer clear advantages compared to chemically catalyzed oxidations in terms of chemo, regio and stereoselectivity as well as a reduced environmental impact. One of the most industrially important reactions is the oxidation of alcohols, which can be carried out using alcohol dehydrogenases. However, their effective use requires an effective regeneration of the oxidized nicotinamide cofactor (NAD(P)<sup>+</sup>), which is critical for the economic feasibility of the process. NAD(P)H oxidase is an enzyme class of particular interest for this cofactor regeneration since it enables the use of molecular oxygen as a substrate, generating either water or hydrogen peroxide as a by-product. The use of these enzymes is now gaining an increased interest, and several different enzymes of both types have been applied for proof-of-concept. In this review, we give an overview of the state-of-the-art, and discuss several important issues for future implementation in a production process.</p></div>\",\"PeriodicalId\":16416,\"journal\":{\"name\":\"Journal of Molecular Catalysis B-enzymatic\",\"volume\":\"134 \",\"pages\":\"Pages 331-339\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.09.016\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis B-enzymatic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381117716301904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716301904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 44

摘要

与化学催化氧化相比,生物催化氧化在化学、区域和立体选择性以及减少对环境的影响方面具有明显的优势。工业上最重要的反应之一是醇的氧化,这可以用醇脱氢酶来进行。然而,它们的有效利用需要氧化烟酰胺辅助因子(NAD(P)+)的有效再生,这对该工艺的经济可行性至关重要。NAD(P)H氧化酶是这种辅助因子再生特别感兴趣的一类酶,因为它可以使用分子氧作为底物,产生水或过氧化氢作为副产物。现在对这些酶的使用越来越感兴趣,两种类型的几种不同的酶已被用于概念验证。在这篇综述中,我们概述了最新的技术,并讨论了未来在生产过程中实施的几个重要问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations

Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations

Biocatalytic oxidations can offer clear advantages compared to chemically catalyzed oxidations in terms of chemo, regio and stereoselectivity as well as a reduced environmental impact. One of the most industrially important reactions is the oxidation of alcohols, which can be carried out using alcohol dehydrogenases. However, their effective use requires an effective regeneration of the oxidized nicotinamide cofactor (NAD(P)+), which is critical for the economic feasibility of the process. NAD(P)H oxidase is an enzyme class of particular interest for this cofactor regeneration since it enables the use of molecular oxygen as a substrate, generating either water or hydrogen peroxide as a by-product. The use of these enzymes is now gaining an increased interest, and several different enzymes of both types have been applied for proof-of-concept. In this review, we give an overview of the state-of-the-art, and discuss several important issues for future implementation in a production process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Catalysis B-enzymatic
Journal of Molecular Catalysis B-enzymatic 生物-生化与分子生物学
CiteScore
2.58
自引率
0.00%
发文量
0
审稿时长
3.4 months
期刊介绍: Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation. Papers should report novel and significant advances in one or more of the following topics; Applied and fundamental studies of enzymes used for biocatalysis; Industrial applications of enzymatic processes, e.g. in fine chemical synthesis; Chemo-, regio- and enantioselective transformations; Screening for biocatalysts; Integration of biocatalytic and chemical steps in organic syntheses; Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies; Enzyme immobilization and stabilization, particularly in non-conventional media; Bioprocess engineering aspects, e.g. membrane bioreactors; Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification; Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity; Biomimetic studies related to enzymatic transformations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信