{"title":"双分量角速率传感器动态误差研究中影响实验因素的评价","authors":"V. P. Podchezertsev, D. D. Nguyen","doi":"10.18698/0236-3933-2022-4-92-107","DOIUrl":null,"url":null,"abstract":"Angular rate sensors are widely used in various technology areas, especially in aviation and rocket technologies. Angular rate sensors are installed in aircraft stabilization, orientation and navigation systems to determine the object angular position and control. In addition, they could be introduced in the automatic control systems of a moving object to enter a signal proportional to the angular rate in the control function or to damp the object oscillations occurring under the action of angular or linear overloads. Various design schemes of angular rate sensors are currently known to perform their functionality with required accuracy in the given frequency range. For them, the influence of design parameters and feedback loop on the accuracy of a device under conditions of dynamic operational influences was studied sufficiently. Biaxial angular rate sensor built on the basis of a dynamically tuned gyroscope was considered, and the influence of various design and technological factors on the experimental estimated accuracy of its dynamic error was studied. Main probable factors leading to inaccuracies in determining this error in testing on the angular oscillations bench were considered","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Experiment Factors Influence in Studying Dynamic Error of the TwoComponent Angular Rate Sensor\",\"authors\":\"V. P. Podchezertsev, D. D. Nguyen\",\"doi\":\"10.18698/0236-3933-2022-4-92-107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Angular rate sensors are widely used in various technology areas, especially in aviation and rocket technologies. Angular rate sensors are installed in aircraft stabilization, orientation and navigation systems to determine the object angular position and control. In addition, they could be introduced in the automatic control systems of a moving object to enter a signal proportional to the angular rate in the control function or to damp the object oscillations occurring under the action of angular or linear overloads. Various design schemes of angular rate sensors are currently known to perform their functionality with required accuracy in the given frequency range. For them, the influence of design parameters and feedback loop on the accuracy of a device under conditions of dynamic operational influences was studied sufficiently. Biaxial angular rate sensor built on the basis of a dynamically tuned gyroscope was considered, and the influence of various design and technological factors on the experimental estimated accuracy of its dynamic error was studied. Main probable factors leading to inaccuracies in determining this error in testing on the angular oscillations bench were considered\",\"PeriodicalId\":12961,\"journal\":{\"name\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18698/0236-3933-2022-4-92-107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/0236-3933-2022-4-92-107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Evaluation of the Experiment Factors Influence in Studying Dynamic Error of the TwoComponent Angular Rate Sensor
Angular rate sensors are widely used in various technology areas, especially in aviation and rocket technologies. Angular rate sensors are installed in aircraft stabilization, orientation and navigation systems to determine the object angular position and control. In addition, they could be introduced in the automatic control systems of a moving object to enter a signal proportional to the angular rate in the control function or to damp the object oscillations occurring under the action of angular or linear overloads. Various design schemes of angular rate sensors are currently known to perform their functionality with required accuracy in the given frequency range. For them, the influence of design parameters and feedback loop on the accuracy of a device under conditions of dynamic operational influences was studied sufficiently. Biaxial angular rate sensor built on the basis of a dynamically tuned gyroscope was considered, and the influence of various design and technological factors on the experimental estimated accuracy of its dynamic error was studied. Main probable factors leading to inaccuracies in determining this error in testing on the angular oscillations bench were considered
期刊介绍:
The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.