Heun和Gauss超几何函数之间的参数变换

Pub Date : 2009-10-16 DOI:10.1619/fesi.56.271
R. Vidunas, G. Filipuk
{"title":"Heun和Gauss超几何函数之间的参数变换","authors":"R. Vidunas, G. Filipuk","doi":"10.1619/fesi.56.271","DOIUrl":null,"url":null,"abstract":"The hypergeometric and Heun functions are classical special functions. Transformation formulas between them are commonly induced by pull-back transformations of their differential equations, with respect to some coverings P1-to-P1. This gives expressions of Heun functions in terms of better understood hypergeometric functions. This article presents the list of hypergeometric-to-Heun pull-back transformations with a free continuous parameter, and illustrates most of them by a Heun-to-hypergeometric reduction formula. In total, 61 parametric transformations exist, of maximal degree 12.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Parametric Transformations between the Heun and Gauss Hypergeometric Functions\",\"authors\":\"R. Vidunas, G. Filipuk\",\"doi\":\"10.1619/fesi.56.271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hypergeometric and Heun functions are classical special functions. Transformation formulas between them are commonly induced by pull-back transformations of their differential equations, with respect to some coverings P1-to-P1. This gives expressions of Heun functions in terms of better understood hypergeometric functions. This article presents the list of hypergeometric-to-Heun pull-back transformations with a free continuous parameter, and illustrates most of them by a Heun-to-hypergeometric reduction formula. In total, 61 parametric transformations exist, of maximal degree 12.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.56.271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.56.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

超几何函数和Heun函数是经典的特殊函数。它们之间的变换公式通常是由它们的微分方程的后拉变换得出的,关于一些覆盖物p1到p1。这给出了Heun函数的表达式用更容易理解的超几何函数表示。本文给出了一系列具有自由连续参数的超几何到heun的回拉变换,并用一个heun到超几何的约简公式说明了它们中的大多数。总共存在61个参数变换,最大次为12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Parametric Transformations between the Heun and Gauss Hypergeometric Functions
The hypergeometric and Heun functions are classical special functions. Transformation formulas between them are commonly induced by pull-back transformations of their differential equations, with respect to some coverings P1-to-P1. This gives expressions of Heun functions in terms of better understood hypergeometric functions. This article presents the list of hypergeometric-to-Heun pull-back transformations with a free continuous parameter, and illustrates most of them by a Heun-to-hypergeometric reduction formula. In total, 61 parametric transformations exist, of maximal degree 12.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信