基数64浮点除法器

J. Bruguera
{"title":"基数64浮点除法器","authors":"J. Bruguera","doi":"10.1109/ARITH.2018.8464815","DOIUrl":null,"url":null,"abstract":"Digit-recurrence division is widely used in actual high-performance microprocessors because it presents a good trade-off in terms of performance, area and power. consumption. In this paper we present a radix-64 divider, providing 6 bits per cycle. To have an affordable implementation, each iteration is composed of three radix-4 iterations; speculation is used between consecutive radix-4 iterations to get a reduced timing. The result is a fast, low-latency floating-point divider, requiring 11, 6, and 4 cycles for double-precision, single-precision and half-precision floating-point division with normalized operands and result. One or two additional cycles are needed in case of subnormal operand(s) or result.","PeriodicalId":6576,"journal":{"name":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","volume":"46 1","pages":"84-91"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Radix-64 Floating-Point Divider\",\"authors\":\"J. Bruguera\",\"doi\":\"10.1109/ARITH.2018.8464815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digit-recurrence division is widely used in actual high-performance microprocessors because it presents a good trade-off in terms of performance, area and power. consumption. In this paper we present a radix-64 divider, providing 6 bits per cycle. To have an affordable implementation, each iteration is composed of three radix-4 iterations; speculation is used between consecutive radix-4 iterations to get a reduced timing. The result is a fast, low-latency floating-point divider, requiring 11, 6, and 4 cycles for double-precision, single-precision and half-precision floating-point division with normalized operands and result. One or two additional cycles are needed in case of subnormal operand(s) or result.\",\"PeriodicalId\":6576,\"journal\":{\"name\":\"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"46 1\",\"pages\":\"84-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2018.8464815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2018.8464815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

数字递归除法在实际的高性能微处理器中得到了广泛的应用,因为它在性能、面积和功耗方面都有很好的权衡。消费。在本文中,我们提出了一个基数64分频器,每个周期提供6位。为了获得负担得起的实现,每次迭代由三个基数为4的迭代组成;在连续的基数为4的迭代之间使用推测来减少时间。结果是一个快速、低延迟的浮点除法器,使用标准化操作数和结果进行双精度、单精度和半精度浮点除法需要11、6和4个周期。如果操作数或结果不正常,则需要一个或两个额外的周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radix-64 Floating-Point Divider
Digit-recurrence division is widely used in actual high-performance microprocessors because it presents a good trade-off in terms of performance, area and power. consumption. In this paper we present a radix-64 divider, providing 6 bits per cycle. To have an affordable implementation, each iteration is composed of three radix-4 iterations; speculation is used between consecutive radix-4 iterations to get a reduced timing. The result is a fast, low-latency floating-point divider, requiring 11, 6, and 4 cycles for double-precision, single-precision and half-precision floating-point division with normalized operands and result. One or two additional cycles are needed in case of subnormal operand(s) or result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信