利用排名分解机进行微博检索

Runwei Qiang, Feng Liang, Jianwu Yang
{"title":"利用排名分解机进行微博检索","authors":"Runwei Qiang, Feng Liang, Jianwu Yang","doi":"10.1145/2505515.2505648","DOIUrl":null,"url":null,"abstract":"Learning to rank method has been proposed for practical application in the field of information retrieval. When employing it in microblog retrieval, the significant interactions of various involved features are rarely considered. In this paper, we propose a Ranking Factorization Machine (Ranking FM) model, which applies Factorization Machine model to microblog ranking on basis of pairwise classification. In this way, our proposed model combines the generality of learning to rank framework with the advantages of factorization models in estimating interactions between features, leading to better retrieval performance. Moreover, three groups of features (content relevance features, semantic expansion features and quality features) and their interactions are utilized in the Ranking FM model with the methods of stochastic gradient descent and adaptive regularization for optimization. Experimental results demonstrate its superiority over several baseline systems on a real Twitter dataset in terms of P@30 and MAP metrics. Furthermore, it outperforms the best performing results in the TREC'12 Real-Time Search Task.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Exploiting ranking factorization machines for microblog retrieval\",\"authors\":\"Runwei Qiang, Feng Liang, Jianwu Yang\",\"doi\":\"10.1145/2505515.2505648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning to rank method has been proposed for practical application in the field of information retrieval. When employing it in microblog retrieval, the significant interactions of various involved features are rarely considered. In this paper, we propose a Ranking Factorization Machine (Ranking FM) model, which applies Factorization Machine model to microblog ranking on basis of pairwise classification. In this way, our proposed model combines the generality of learning to rank framework with the advantages of factorization models in estimating interactions between features, leading to better retrieval performance. Moreover, three groups of features (content relevance features, semantic expansion features and quality features) and their interactions are utilized in the Ranking FM model with the methods of stochastic gradient descent and adaptive regularization for optimization. Experimental results demonstrate its superiority over several baseline systems on a real Twitter dataset in terms of P@30 and MAP metrics. Furthermore, it outperforms the best performing results in the TREC'12 Real-Time Search Task.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

学习排序法已被提出用于信息检索领域的实际应用。在将其应用于微博检索时,很少考虑所涉及的各种特征之间的重要交互作用。本文提出了一个排名因子机(Ranking FM)模型,将因子机模型应用于基于两两分类的微博排名中。这样,我们提出的模型结合了学习排序框架的通用性和分解模型在估计特征之间相互作用方面的优势,从而获得了更好的检索性能。采用随机梯度下降和自适应正则化的方法,将内容关联特征、语义扩展特征和质量特征三组特征及其相互作用应用到排序FM模型中。在真实Twitter数据集上的实验结果表明,该方法在P@30和MAP指标方面优于多个基线系统。此外,它优于TREC'12实时搜索任务中的最佳性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting ranking factorization machines for microblog retrieval
Learning to rank method has been proposed for practical application in the field of information retrieval. When employing it in microblog retrieval, the significant interactions of various involved features are rarely considered. In this paper, we propose a Ranking Factorization Machine (Ranking FM) model, which applies Factorization Machine model to microblog ranking on basis of pairwise classification. In this way, our proposed model combines the generality of learning to rank framework with the advantages of factorization models in estimating interactions between features, leading to better retrieval performance. Moreover, three groups of features (content relevance features, semantic expansion features and quality features) and their interactions are utilized in the Ranking FM model with the methods of stochastic gradient descent and adaptive regularization for optimization. Experimental results demonstrate its superiority over several baseline systems on a real Twitter dataset in terms of P@30 and MAP metrics. Furthermore, it outperforms the best performing results in the TREC'12 Real-Time Search Task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信