M. Krabbendam, A. Hall, R. M. Palamakumbura, A. Finlayson
{"title":"瑞典东部冰川撕裂期间岩石山的冰川构造崩解","authors":"M. Krabbendam, A. Hall, R. M. Palamakumbura, A. Finlayson","doi":"10.1080/04353676.2021.2022356","DOIUrl":null,"url":null,"abstract":"ABSTRACT Roches moutonnées are typical landforms of glacial erosion developed in hard rocks, with an asymmetric profile caused by abrasion and lee-side plucking. In eastern Sweden, some roches moutonnées show extensive damage, including open fractures, disintegration into blocks, fracture caves and short boulder trains. Disintegration increases along ice-flow directions during deglaciation of the last Weichselian Fennoscandian Ice Sheet, indicating a subglacial origin: limited edge rounding can be explained by a combination of hard rock, slow abrasion rates and disintegration just prior to deglaciation. The roches moutonnées initially developed in kernels of gneissic rocks with a wide fracture spacing (large block size) and interlocking fracture pattern, and hence high overall rock mass strength. Dilated fractures and ‘fracture caves’ occur up to 15 m below the ice-bed interface. It is proposed that hydraulic jacking by overpressured water opened up the rock mass along pre-existing fractures. Jacking reduced rock mass strength, allowing glaciotectonic deformation of the roches moutonnées. Uneven hydraulic jacking led to uplift of individual fracture-bound blocks above the pre-existing smooth, abraded surface of the roches moutonnées, creating blunt, step-like edges. These edges allowed high ice pushing forces to act on large blocks: where blocks extend into the deeper rock mass, they further aided the disintegration of the rock mass. The disintegrated roches moutonnées can be regarded as transient features between intact bedrock and complete disintegration into boulders. The jacking-disintegration-transport sequence is characteristic of glacial ripping and very different from classic lee-side plucking.","PeriodicalId":55112,"journal":{"name":"Geografiska Annaler Series A-Physical Geography","volume":"1 1","pages":"35 - 56"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Glaciotectonic disintegration of roches moutonnées during glacial ripping in east Sweden\",\"authors\":\"M. Krabbendam, A. Hall, R. M. Palamakumbura, A. Finlayson\",\"doi\":\"10.1080/04353676.2021.2022356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Roches moutonnées are typical landforms of glacial erosion developed in hard rocks, with an asymmetric profile caused by abrasion and lee-side plucking. In eastern Sweden, some roches moutonnées show extensive damage, including open fractures, disintegration into blocks, fracture caves and short boulder trains. Disintegration increases along ice-flow directions during deglaciation of the last Weichselian Fennoscandian Ice Sheet, indicating a subglacial origin: limited edge rounding can be explained by a combination of hard rock, slow abrasion rates and disintegration just prior to deglaciation. The roches moutonnées initially developed in kernels of gneissic rocks with a wide fracture spacing (large block size) and interlocking fracture pattern, and hence high overall rock mass strength. Dilated fractures and ‘fracture caves’ occur up to 15 m below the ice-bed interface. It is proposed that hydraulic jacking by overpressured water opened up the rock mass along pre-existing fractures. Jacking reduced rock mass strength, allowing glaciotectonic deformation of the roches moutonnées. Uneven hydraulic jacking led to uplift of individual fracture-bound blocks above the pre-existing smooth, abraded surface of the roches moutonnées, creating blunt, step-like edges. These edges allowed high ice pushing forces to act on large blocks: where blocks extend into the deeper rock mass, they further aided the disintegration of the rock mass. The disintegrated roches moutonnées can be regarded as transient features between intact bedrock and complete disintegration into boulders. The jacking-disintegration-transport sequence is characteristic of glacial ripping and very different from classic lee-side plucking.\",\"PeriodicalId\":55112,\"journal\":{\"name\":\"Geografiska Annaler Series A-Physical Geography\",\"volume\":\"1 1\",\"pages\":\"35 - 56\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geografiska Annaler Series A-Physical Geography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/04353676.2021.2022356\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geografiska Annaler Series A-Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/04353676.2021.2022356","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Glaciotectonic disintegration of roches moutonnées during glacial ripping in east Sweden
ABSTRACT Roches moutonnées are typical landforms of glacial erosion developed in hard rocks, with an asymmetric profile caused by abrasion and lee-side plucking. In eastern Sweden, some roches moutonnées show extensive damage, including open fractures, disintegration into blocks, fracture caves and short boulder trains. Disintegration increases along ice-flow directions during deglaciation of the last Weichselian Fennoscandian Ice Sheet, indicating a subglacial origin: limited edge rounding can be explained by a combination of hard rock, slow abrasion rates and disintegration just prior to deglaciation. The roches moutonnées initially developed in kernels of gneissic rocks with a wide fracture spacing (large block size) and interlocking fracture pattern, and hence high overall rock mass strength. Dilated fractures and ‘fracture caves’ occur up to 15 m below the ice-bed interface. It is proposed that hydraulic jacking by overpressured water opened up the rock mass along pre-existing fractures. Jacking reduced rock mass strength, allowing glaciotectonic deformation of the roches moutonnées. Uneven hydraulic jacking led to uplift of individual fracture-bound blocks above the pre-existing smooth, abraded surface of the roches moutonnées, creating blunt, step-like edges. These edges allowed high ice pushing forces to act on large blocks: where blocks extend into the deeper rock mass, they further aided the disintegration of the rock mass. The disintegrated roches moutonnées can be regarded as transient features between intact bedrock and complete disintegration into boulders. The jacking-disintegration-transport sequence is characteristic of glacial ripping and very different from classic lee-side plucking.
期刊介绍:
Geografiska Annaler: Series A, Physical Geography publishes original research in the field of Physical Geography with special emphasis on cold regions/high latitude, high altitude processes, landforms and environmental change, past, present and future.
The journal primarily promotes dissemination of regular research by publishing research-based articles. The journal also publishes thematic issues where collections of articles around a specific themes are gathered. Such themes are determined by the Editors upon request. Finally the journal wishes to promote knowledge and understanding of topics in Physical Geography, their origin, development and current standing through invited review articles.