增强聚六亚甲基胍接枝聚酰胺复合膜的抗菌和抗生物污染性能

Nguyen Son Duong, Duong Xuan Quan, Gundsambuu Narantsatsralt, Vu Van Nhan, Nguyen Pham Ham, Ngo Hong Anh Thu
{"title":"增强聚六亚甲基胍接枝聚酰胺复合膜的抗菌和抗生物污染性能","authors":"Nguyen Son Duong, Duong Xuan Quan, Gundsambuu Narantsatsralt, Vu Van Nhan, Nguyen Pham Ham, Ngo Hong Anh Thu","doi":"10.25073/2588-1140/vnunst.5562","DOIUrl":null,"url":null,"abstract":"In this work, a thin-film composite polyamide membrane with antimicrobial polyhexamethylene guanidine (PHMG) was fabricated by the combination of photo-induced and chemical grafting to enhance the antifouling and anti-biofouling properties of the membrane. The surface properties of the membrane were evaluated using field-emission scanning electron microscopy (FE-SEM) images, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle (WCA) values, and antimicrobial activity of the membrane. The membrane separation performance was evaluated by the flux and the ability to retain Ca2+ ions in water. The antifouling and anti-biofouling properties were evaluated by the maintained flux ratios after 9 hour-filtration of humic acid and bovine serum albumin (BSA) solutions. The results showed that the grafted membrane’s surface became tighter (the retention increased from 97.3% to 98.6%), and no bacteria were observed on the surface of the grafted membrane. Meanwhile, the anti-fouling and anti-biofouling properties were also improved compared to the original membrane.","PeriodicalId":23524,"journal":{"name":"VNU Journal of Science: Natural Sciences and Technology","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Antimicrobial and Anti-biofouling Properties of Polyamide Composite Membrane Grafted with Polyhexamethylene Guanidine (PHMG)\",\"authors\":\"Nguyen Son Duong, Duong Xuan Quan, Gundsambuu Narantsatsralt, Vu Van Nhan, Nguyen Pham Ham, Ngo Hong Anh Thu\",\"doi\":\"10.25073/2588-1140/vnunst.5562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a thin-film composite polyamide membrane with antimicrobial polyhexamethylene guanidine (PHMG) was fabricated by the combination of photo-induced and chemical grafting to enhance the antifouling and anti-biofouling properties of the membrane. The surface properties of the membrane were evaluated using field-emission scanning electron microscopy (FE-SEM) images, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle (WCA) values, and antimicrobial activity of the membrane. The membrane separation performance was evaluated by the flux and the ability to retain Ca2+ ions in water. The antifouling and anti-biofouling properties were evaluated by the maintained flux ratios after 9 hour-filtration of humic acid and bovine serum albumin (BSA) solutions. The results showed that the grafted membrane’s surface became tighter (the retention increased from 97.3% to 98.6%), and no bacteria were observed on the surface of the grafted membrane. Meanwhile, the anti-fouling and anti-biofouling properties were also improved compared to the original membrane.\",\"PeriodicalId\":23524,\"journal\":{\"name\":\"VNU Journal of Science: Natural Sciences and Technology\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Natural Sciences and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1140/vnunst.5562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Natural Sciences and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1140/vnunst.5562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用光诱导和化学接枝相结合的方法制备了抗菌聚六亚甲基胍(PHMG)薄膜复合聚酰胺膜,提高了膜的防污和抗生物污染性能。利用场发射扫描电镜(FE-SEM)图像、衰减全反射傅立叶变换红外光谱(ATR-FTIR)、水接触角(WCA)值和抗菌活性对膜的表面性能进行了评价。通过通量和保留水中Ca2+离子的能力来评价膜的分离性能。通过腐植酸和牛血清白蛋白(BSA)溶液过滤9小时后保持的通量比来评价其防污和抗生物污性能。结果表明,接枝膜的表面变得更加紧密(保留率从97.3%提高到98.6%),接枝膜表面没有细菌。同时,与原膜相比,膜的抗污染和抗生物污染性能也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Antimicrobial and Anti-biofouling Properties of Polyamide Composite Membrane Grafted with Polyhexamethylene Guanidine (PHMG)
In this work, a thin-film composite polyamide membrane with antimicrobial polyhexamethylene guanidine (PHMG) was fabricated by the combination of photo-induced and chemical grafting to enhance the antifouling and anti-biofouling properties of the membrane. The surface properties of the membrane were evaluated using field-emission scanning electron microscopy (FE-SEM) images, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle (WCA) values, and antimicrobial activity of the membrane. The membrane separation performance was evaluated by the flux and the ability to retain Ca2+ ions in water. The antifouling and anti-biofouling properties were evaluated by the maintained flux ratios after 9 hour-filtration of humic acid and bovine serum albumin (BSA) solutions. The results showed that the grafted membrane’s surface became tighter (the retention increased from 97.3% to 98.6%), and no bacteria were observed on the surface of the grafted membrane. Meanwhile, the anti-fouling and anti-biofouling properties were also improved compared to the original membrane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信