{"title":"Yoda:一个高可用的第7层负载均衡器","authors":"Rohan Gandhi, Charlie Hu, Ming Zhang","doi":"10.1145/2901318.2901352","DOIUrl":null,"url":null,"abstract":"Layer-7 load balancing is a foundational building block of online services. The lack of offerings from major public cloud providers have left online services to build their own load balancers (LB), or use third-party LB design such as HAProxy. The key problem with such proxy-based design is each proxy instance is a single point of failure, as upon its failure, the TCP flow state for the connections with the client and server is lost which breaks the user flows. This significantly affects user experience and online services revenue. In this paper, we present Yoda, a highly available, scalable and low-latency L7-LB-as-a-service in a public cloud. Yoda is based on two design principles we propose for achieving high availability of a L7 LB: decoupling the flow state from the LB instances and storing it in a persistent storage, and leveraging the L4 LB service to enable each L7 LB instance to use the virtual IP in interacting with both the client and the server (called front-and-back indirection). Our evaluation of Yoda prototype on a 60-VM testbed in Windows Azure shows the overhead of decoupling TCP state into a persistent storage is very low (<1 msec), and Yoda maintains all flows during LB instance failures, addition, removal, as well as user policy updates. Our simulation driven by a one-day trace from production online services show that compared to using Yoda by each tenant, Yoda-as-a-service reduces L7 LB instance cost for the tenants by 3.7x while providing 4x more redundancy.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Yoda: a highly available layer-7 load balancer\",\"authors\":\"Rohan Gandhi, Charlie Hu, Ming Zhang\",\"doi\":\"10.1145/2901318.2901352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layer-7 load balancing is a foundational building block of online services. The lack of offerings from major public cloud providers have left online services to build their own load balancers (LB), or use third-party LB design such as HAProxy. The key problem with such proxy-based design is each proxy instance is a single point of failure, as upon its failure, the TCP flow state for the connections with the client and server is lost which breaks the user flows. This significantly affects user experience and online services revenue. In this paper, we present Yoda, a highly available, scalable and low-latency L7-LB-as-a-service in a public cloud. Yoda is based on two design principles we propose for achieving high availability of a L7 LB: decoupling the flow state from the LB instances and storing it in a persistent storage, and leveraging the L4 LB service to enable each L7 LB instance to use the virtual IP in interacting with both the client and the server (called front-and-back indirection). Our evaluation of Yoda prototype on a 60-VM testbed in Windows Azure shows the overhead of decoupling TCP state into a persistent storage is very low (<1 msec), and Yoda maintains all flows during LB instance failures, addition, removal, as well as user policy updates. Our simulation driven by a one-day trace from production online services show that compared to using Yoda by each tenant, Yoda-as-a-service reduces L7 LB instance cost for the tenants by 3.7x while providing 4x more redundancy.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2901318.2901352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901318.2901352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Layer-7 load balancing is a foundational building block of online services. The lack of offerings from major public cloud providers have left online services to build their own load balancers (LB), or use third-party LB design such as HAProxy. The key problem with such proxy-based design is each proxy instance is a single point of failure, as upon its failure, the TCP flow state for the connections with the client and server is lost which breaks the user flows. This significantly affects user experience and online services revenue. In this paper, we present Yoda, a highly available, scalable and low-latency L7-LB-as-a-service in a public cloud. Yoda is based on two design principles we propose for achieving high availability of a L7 LB: decoupling the flow state from the LB instances and storing it in a persistent storage, and leveraging the L4 LB service to enable each L7 LB instance to use the virtual IP in interacting with both the client and the server (called front-and-back indirection). Our evaluation of Yoda prototype on a 60-VM testbed in Windows Azure shows the overhead of decoupling TCP state into a persistent storage is very low (<1 msec), and Yoda maintains all flows during LB instance failures, addition, removal, as well as user policy updates. Our simulation driven by a one-day trace from production online services show that compared to using Yoda by each tenant, Yoda-as-a-service reduces L7 LB instance cost for the tenants by 3.7x while providing 4x more redundancy.