勒贝格可积函数空间上的弱对称函数

IF 1 Q1 MATHEMATICS
T. Vasylyshyn, V.A. Zahorodniuk
{"title":"勒贝格可积函数空间上的弱对称函数","authors":"T. Vasylyshyn, V.A. Zahorodniuk","doi":"10.15330/cmp.14.2.437-441","DOIUrl":null,"url":null,"abstract":"In this work, we present the notion of a weakly symmetric function. We show that the subset of all weakly symmetric elements of an arbitrary vector space of functions is a vector space itself. Moreover, the subset of all weakly symmetric elements of some algebra of functions is an algebra. Also we consider weakly symmetric functions on the complex Banach space $L_p[0,1]$ of all Lebesgue measurable complex-valued functions on $[0,1]$ for which the $p$th power of the absolute value is Lebesgue integrable. We show that every continuous linear functional on $L_p[0,1],$ where $p\\in (1,+\\infty),$ can be approximated by weakly symmetric continuous linear functionals.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Weakly symmetric functions on spaces of Lebesgue integrable functions\",\"authors\":\"T. Vasylyshyn, V.A. Zahorodniuk\",\"doi\":\"10.15330/cmp.14.2.437-441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present the notion of a weakly symmetric function. We show that the subset of all weakly symmetric elements of an arbitrary vector space of functions is a vector space itself. Moreover, the subset of all weakly symmetric elements of some algebra of functions is an algebra. Also we consider weakly symmetric functions on the complex Banach space $L_p[0,1]$ of all Lebesgue measurable complex-valued functions on $[0,1]$ for which the $p$th power of the absolute value is Lebesgue integrable. We show that every continuous linear functional on $L_p[0,1],$ where $p\\\\in (1,+\\\\infty),$ can be approximated by weakly symmetric continuous linear functionals.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.2.437-441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.437-441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们提出了弱对称函数的概念。我们证明了任意函数向量空间的所有弱对称元素的子集是一个向量空间本身。此外,某些函数代数的所有弱对称元素的子集是一个代数。此外,我们还考虑了$[0,1]$上所有Lebesgue可测复值函数的绝对值的$p$次幂为Lebesgue可积的复Banach空间$L_p[0,1]$上的弱对称函数。我们证明了$L_p[0,1],$上的每一个连续线性泛函,其中$p\in (1,+\infty),$可以被弱对称连续线性泛函近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly symmetric functions on spaces of Lebesgue integrable functions
In this work, we present the notion of a weakly symmetric function. We show that the subset of all weakly symmetric elements of an arbitrary vector space of functions is a vector space itself. Moreover, the subset of all weakly symmetric elements of some algebra of functions is an algebra. Also we consider weakly symmetric functions on the complex Banach space $L_p[0,1]$ of all Lebesgue measurable complex-valued functions on $[0,1]$ for which the $p$th power of the absolute value is Lebesgue integrable. We show that every continuous linear functional on $L_p[0,1],$ where $p\in (1,+\infty),$ can be approximated by weakly symmetric continuous linear functionals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信