关于不同质数的幂和2的幂的方程

IF 0.8 4区 数学 Q2 MATHEMATICS
Yuhui Liu
{"title":"关于不同质数的幂和2的幂的方程","authors":"Yuhui Liu","doi":"10.5802/crmath.5","DOIUrl":null,"url":null,"abstract":"In this paper, it is proved that every pair of sufficiently large even integers can be represented by a pair of equations, each containing one prime, one prime square, two prime cubes and 302 powers of 2. This result constitutes a refinement upon that of L. Q. Hu and L. Yang. Mathematical subject classification (2010). 11P32, 11P55. Manuscript received 19th December 2019, revised 9th February 2020 and 10th February 2020, accepted 10th February 2020.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"12 1","pages":"393-400"},"PeriodicalIF":0.8000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On pairs of equations involving unlike powers of primes and powers of 2\",\"authors\":\"Yuhui Liu\",\"doi\":\"10.5802/crmath.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, it is proved that every pair of sufficiently large even integers can be represented by a pair of equations, each containing one prime, one prime square, two prime cubes and 302 powers of 2. This result constitutes a refinement upon that of L. Q. Hu and L. Yang. Mathematical subject classification (2010). 11P32, 11P55. Manuscript received 19th December 2019, revised 9th February 2020 and 10th February 2020, accepted 10th February 2020.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"12 1\",\"pages\":\"393-400\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/crmath.5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了每一对足够大的偶整数都可以用一对方程来表示,每一对方程包含一个素数、一个素数的平方、两个素数的立方和2的302次幂。这个结果是在胡丽琪和杨丽丽的结果的基础上改进而来的。数学学科分类(2010)。第9 - 11、11过去。稿件于2019年12月19日收到,2020年2月9日和2020年2月10日修改,2020年2月10日接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On pairs of equations involving unlike powers of primes and powers of 2
In this paper, it is proved that every pair of sufficiently large even integers can be represented by a pair of equations, each containing one prime, one prime square, two prime cubes and 302 powers of 2. This result constitutes a refinement upon that of L. Q. Hu and L. Yang. Mathematical subject classification (2010). 11P32, 11P55. Manuscript received 19th December 2019, revised 9th February 2020 and 10th February 2020, accepted 10th February 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信