Smectic B:长程平动有序和静态剪切不稳定。非线性效应

I. S. Gersht, V. Pershin
{"title":"Smectic B:长程平动有序和静态剪切不稳定。非线性效应","authors":"I. S. Gersht, V. Pershin","doi":"10.1051/JPHYS:0199000510160176900","DOIUrl":null,"url":null,"abstract":"Terms nonlinear with respect to the wave vector at translational oscillation frequencies have been taken into account for a layer system of uniaxial molecules and it has been proved that crystal order can coexist with a shear instability. On this basis a new model of smectic B phase has been proposed where the structure possessed long range translational order in all directions. At the same time interlayer dynamical shear modulus decreases at lower ω ap frequencies of an applied strain and equals zero in the static case (ω ap →0)","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"44 1","pages":"1769-1776"},"PeriodicalIF":0.0000,"publicationDate":"1990-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smectic B : long range translational order and static shear instability. Nonlinear effects\",\"authors\":\"I. S. Gersht, V. Pershin\",\"doi\":\"10.1051/JPHYS:0199000510160176900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terms nonlinear with respect to the wave vector at translational oscillation frequencies have been taken into account for a layer system of uniaxial molecules and it has been proved that crystal order can coexist with a shear instability. On this basis a new model of smectic B phase has been proposed where the structure possessed long range translational order in all directions. At the same time interlayer dynamical shear modulus decreases at lower ω ap frequencies of an applied strain and equals zero in the static case (ω ap →0)\",\"PeriodicalId\":14747,\"journal\":{\"name\":\"Journal De Physique\",\"volume\":\"44 1\",\"pages\":\"1769-1776\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYS:0199000510160176900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510160176900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑了单轴分子层系在平移振荡频率下与波矢量有关的非线性项,并证明了晶体有序可以与剪切不稳定性共存。在此基础上提出了一种结构在所有方向上都具有长程平动顺序的近晶B相新模型。同时,层间动态剪切模量在较低ω ap频率下减小,在静态情况下等于零(ω ap→0)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smectic B : long range translational order and static shear instability. Nonlinear effects
Terms nonlinear with respect to the wave vector at translational oscillation frequencies have been taken into account for a layer system of uniaxial molecules and it has been proved that crystal order can coexist with a shear instability. On this basis a new model of smectic B phase has been proposed where the structure possessed long range translational order in all directions. At the same time interlayer dynamical shear modulus decreases at lower ω ap frequencies of an applied strain and equals zero in the static case (ω ap →0)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信