D. Kraaijpoel, J. Martins, S. Osinga, Bouko Vogelaar, J. Breunese
{"title":"格罗宁根气田地震b值变化静态和动态预测的统计分析","authors":"D. Kraaijpoel, J. Martins, S. Osinga, Bouko Vogelaar, J. Breunese","doi":"10.1017/njg.2022.15","DOIUrl":null,"url":null,"abstract":"Abstract We perform statistical analyses on spatiotemporal patterns in the magnitude distribution of induced earthquakes in the Groningen natural gas field. The seismic catalogue contains 336 earthquakes with (local) magnitudes above \n$1.45$\n , observed in the period between 1 January 1995 and 1 January 2022. An exploratory moving-window analysis of maximum-likelihood b-values in both time and space does not reveal any significant variation in time, but does reveal a spatial variation that exceeds the \n$0.05$\n significance level. In search for improved understanding of the observed spatial variations in physical terms we test five physical reservoir properties as possible b-value predictors. The predictors include two static (spatial, time-independent) properties: the reservoir layer thickness, and the topographic gradient (a measure of the degree of faulting intensity in the reservoir); and three dynamic (spatiotemporal, time-dependent) properties: the pressure drop due to gas extraction, the resulting reservoir compaction, and a measure for the resulting induced stress. The latter property is the one that is currently used in the seismic source models that feed into the state-of-the-art hazard and risk assessment. We assess the predictive capabilities of the five properties by statistical evaluation of both moving window analysis, and maximum-likelihood parameter estimation for a number of simple functional forms that express the b-value as a function of the predictor. We find significant linear trends of the b-value for both topographic gradient and induced stress, but even more pronouncedly for reservoir thickness. Also for the moving window analysis and the step function fit, the reservoir thickness provides the most significant results. We conclude that reservoir thickness is a strong predictor for spatial b-value variations in the Groningen field. We propose to develop a forecasting model for Groningen magnitude distributions conditioned on reservoir thickness, to be used alongside, or as a replacement, for the current models conditioned on induced stress.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"4 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical analysis of static and dynamic predictors for seismic b-value variations in the Groningen gas field\",\"authors\":\"D. Kraaijpoel, J. Martins, S. Osinga, Bouko Vogelaar, J. Breunese\",\"doi\":\"10.1017/njg.2022.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We perform statistical analyses on spatiotemporal patterns in the magnitude distribution of induced earthquakes in the Groningen natural gas field. The seismic catalogue contains 336 earthquakes with (local) magnitudes above \\n$1.45$\\n , observed in the period between 1 January 1995 and 1 January 2022. An exploratory moving-window analysis of maximum-likelihood b-values in both time and space does not reveal any significant variation in time, but does reveal a spatial variation that exceeds the \\n$0.05$\\n significance level. In search for improved understanding of the observed spatial variations in physical terms we test five physical reservoir properties as possible b-value predictors. The predictors include two static (spatial, time-independent) properties: the reservoir layer thickness, and the topographic gradient (a measure of the degree of faulting intensity in the reservoir); and three dynamic (spatiotemporal, time-dependent) properties: the pressure drop due to gas extraction, the resulting reservoir compaction, and a measure for the resulting induced stress. The latter property is the one that is currently used in the seismic source models that feed into the state-of-the-art hazard and risk assessment. We assess the predictive capabilities of the five properties by statistical evaluation of both moving window analysis, and maximum-likelihood parameter estimation for a number of simple functional forms that express the b-value as a function of the predictor. We find significant linear trends of the b-value for both topographic gradient and induced stress, but even more pronouncedly for reservoir thickness. Also for the moving window analysis and the step function fit, the reservoir thickness provides the most significant results. We conclude that reservoir thickness is a strong predictor for spatial b-value variations in the Groningen field. We propose to develop a forecasting model for Groningen magnitude distributions conditioned on reservoir thickness, to be used alongside, or as a replacement, for the current models conditioned on induced stress.\",\"PeriodicalId\":49768,\"journal\":{\"name\":\"Netherlands Journal of Geosciences-Geologie En Mijnbouw\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netherlands Journal of Geosciences-Geologie En Mijnbouw\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/njg.2022.15\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/njg.2022.15","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Statistical analysis of static and dynamic predictors for seismic b-value variations in the Groningen gas field
Abstract We perform statistical analyses on spatiotemporal patterns in the magnitude distribution of induced earthquakes in the Groningen natural gas field. The seismic catalogue contains 336 earthquakes with (local) magnitudes above
$1.45$
, observed in the period between 1 January 1995 and 1 January 2022. An exploratory moving-window analysis of maximum-likelihood b-values in both time and space does not reveal any significant variation in time, but does reveal a spatial variation that exceeds the
$0.05$
significance level. In search for improved understanding of the observed spatial variations in physical terms we test five physical reservoir properties as possible b-value predictors. The predictors include two static (spatial, time-independent) properties: the reservoir layer thickness, and the topographic gradient (a measure of the degree of faulting intensity in the reservoir); and three dynamic (spatiotemporal, time-dependent) properties: the pressure drop due to gas extraction, the resulting reservoir compaction, and a measure for the resulting induced stress. The latter property is the one that is currently used in the seismic source models that feed into the state-of-the-art hazard and risk assessment. We assess the predictive capabilities of the five properties by statistical evaluation of both moving window analysis, and maximum-likelihood parameter estimation for a number of simple functional forms that express the b-value as a function of the predictor. We find significant linear trends of the b-value for both topographic gradient and induced stress, but even more pronouncedly for reservoir thickness. Also for the moving window analysis and the step function fit, the reservoir thickness provides the most significant results. We conclude that reservoir thickness is a strong predictor for spatial b-value variations in the Groningen field. We propose to develop a forecasting model for Groningen magnitude distributions conditioned on reservoir thickness, to be used alongside, or as a replacement, for the current models conditioned on induced stress.
期刊介绍:
Netherlands Journal of Geosciences - Geologie en Mijnbouw is a fully open access journal which publishes papers on all aspects of geoscience, providing they are of international interest and quality. As the official publication of the ''Netherlands Journal of Geosciences'' Foundation the journal publishes new and significant research in geosciences with a regional focus on the Netherlands, the North Sea region and relevant adjacent areas. A wide range of topics within the geosciences are covered in the journal, including "geology, physical geography, geophyics, (geo-)archeology, paleontology, hydro(geo)logy, hydrocarbon exploration, modelling and visualisation."
The journal is a continuation of Geologie and Mijnbouw (published by the Royal Geological and Mining Society of the Netherlands, KNGMG) and Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen (published by TNO Geological Survey of the Netherlands). The journal is published in full colour.