{"title":"AZ31B和AZ91B镁合金搅拌摩擦焊接的拉伸试验","authors":"M. Yugandhar, B. D. Naik, P. Kammar","doi":"10.4273/ijvss.15.2.25","DOIUrl":null,"url":null,"abstract":"Rare earth materials containing magnesium alloy AZ91B and AZ31B is finding widespread use in the automotive, aerospace and military industries due to its greater strength-to-weight ratio and formability. Magnesium is typically regarded as difficult to fuse together through material fusion procedures due to flaws found in welding inclusions, porosity and welded junction distortions. Friction stir welding solid state joining procedure is used for Mg joining alloys successfully. The process variables influencing the combined characteristics of weldments include tool pin geometry, downward axial force, tool welding speed (rpm). In the current research, five distinct tool types were used to create friction stir weldment geometries. There were 18 trials overall with 3 components and 8 stages run in accordance with the primary composite design matrix. The information produced by a mathematical model through response surface approach was sufficient for the developed ANOVA was used to verify the model. Large interaction between welding parameters and tensile strength graphs are utilised to depict its behaviour. It was discovered that the cylindrical straight pin has the greatest tensile qualities. The mathematical model is beneficial for adjusting the tensile strength forecast to enhance the weld quality by choosing suitable process parameters for AZ31B and AZ91B welded magnesium alloys.","PeriodicalId":14391,"journal":{"name":"International Journal of Vehicle Structures and Systems","volume":"48 5 Suppl 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile Test on Friction Stir Welded AZ31B and AZ91B Magnesium Alloys\",\"authors\":\"M. Yugandhar, B. D. Naik, P. Kammar\",\"doi\":\"10.4273/ijvss.15.2.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rare earth materials containing magnesium alloy AZ91B and AZ31B is finding widespread use in the automotive, aerospace and military industries due to its greater strength-to-weight ratio and formability. Magnesium is typically regarded as difficult to fuse together through material fusion procedures due to flaws found in welding inclusions, porosity and welded junction distortions. Friction stir welding solid state joining procedure is used for Mg joining alloys successfully. The process variables influencing the combined characteristics of weldments include tool pin geometry, downward axial force, tool welding speed (rpm). In the current research, five distinct tool types were used to create friction stir weldment geometries. There were 18 trials overall with 3 components and 8 stages run in accordance with the primary composite design matrix. The information produced by a mathematical model through response surface approach was sufficient for the developed ANOVA was used to verify the model. Large interaction between welding parameters and tensile strength graphs are utilised to depict its behaviour. It was discovered that the cylindrical straight pin has the greatest tensile qualities. The mathematical model is beneficial for adjusting the tensile strength forecast to enhance the weld quality by choosing suitable process parameters for AZ31B and AZ91B welded magnesium alloys.\",\"PeriodicalId\":14391,\"journal\":{\"name\":\"International Journal of Vehicle Structures and Systems\",\"volume\":\"48 5 Suppl 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Structures and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4273/ijvss.15.2.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Structures and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4273/ijvss.15.2.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Tensile Test on Friction Stir Welded AZ31B and AZ91B Magnesium Alloys
Rare earth materials containing magnesium alloy AZ91B and AZ31B is finding widespread use in the automotive, aerospace and military industries due to its greater strength-to-weight ratio and formability. Magnesium is typically regarded as difficult to fuse together through material fusion procedures due to flaws found in welding inclusions, porosity and welded junction distortions. Friction stir welding solid state joining procedure is used for Mg joining alloys successfully. The process variables influencing the combined characteristics of weldments include tool pin geometry, downward axial force, tool welding speed (rpm). In the current research, five distinct tool types were used to create friction stir weldment geometries. There were 18 trials overall with 3 components and 8 stages run in accordance with the primary composite design matrix. The information produced by a mathematical model through response surface approach was sufficient for the developed ANOVA was used to verify the model. Large interaction between welding parameters and tensile strength graphs are utilised to depict its behaviour. It was discovered that the cylindrical straight pin has the greatest tensile qualities. The mathematical model is beneficial for adjusting the tensile strength forecast to enhance the weld quality by choosing suitable process parameters for AZ31B and AZ91B welded magnesium alloys.
期刊介绍:
The International Journal of Vehicle Structures and Systems (IJVSS) is a quarterly journal and is published by MechAero Foundation for Technical Research and Education Excellence (MAFTREE), based in Chennai, India. MAFTREE is engaged in promoting the advancement of technical research and education in the field of mechanical, aerospace, automotive and its related branches of engineering, science, and technology. IJVSS disseminates high quality original research and review papers, case studies, technical notes and book reviews. All published papers in this journal will have undergone rigorous peer review. IJVSS was founded in 2009. IJVSS is available in Print (ISSN 0975-3060) and Online (ISSN 0975-3540) versions. The prime focus of the IJVSS is given to the subjects of modelling, analysis, design, simulation, optimization and testing of structures and systems of the following: 1. Automotive vehicle including scooter, auto, car, motor sport and racing vehicles, 2. Truck, trailer and heavy vehicles for road transport, 3. Rail, bus, tram, emerging transit and hybrid vehicle, 4. Terrain vehicle, armoured vehicle, construction vehicle and Unmanned Ground Vehicle, 5. Aircraft, launch vehicle, missile, airship, spacecraft, space exploration vehicle, 6. Unmanned Aerial Vehicle, Micro Aerial Vehicle, 7. Marine vehicle, ship and yachts and under water vehicles.