AZ31B和AZ91B镁合金搅拌摩擦焊接的拉伸试验

Q3 Engineering
M. Yugandhar, B. D. Naik, P. Kammar
{"title":"AZ31B和AZ91B镁合金搅拌摩擦焊接的拉伸试验","authors":"M. Yugandhar, B. D. Naik, P. Kammar","doi":"10.4273/ijvss.15.2.25","DOIUrl":null,"url":null,"abstract":"Rare earth materials containing magnesium alloy AZ91B and AZ31B is finding widespread use in the automotive, aerospace and military industries due to its greater strength-to-weight ratio and formability. Magnesium is typically regarded as difficult to fuse together through material fusion procedures due to flaws found in welding inclusions, porosity and welded junction distortions. Friction stir welding solid state joining procedure is used for Mg joining alloys successfully. The process variables influencing the combined characteristics of weldments include tool pin geometry, downward axial force, tool welding speed (rpm). In the current research, five distinct tool types were used to create friction stir weldment geometries. There were 18 trials overall with 3 components and 8 stages run in accordance with the primary composite design matrix. The information produced by a mathematical model through response surface approach was sufficient for the developed ANOVA was used to verify the model. Large interaction between welding parameters and tensile strength graphs are utilised to depict its behaviour. It was discovered that the cylindrical straight pin has the greatest tensile qualities. The mathematical model is beneficial for adjusting the tensile strength forecast to enhance the weld quality by choosing suitable process parameters for AZ31B and AZ91B welded magnesium alloys.","PeriodicalId":14391,"journal":{"name":"International Journal of Vehicle Structures and Systems","volume":"48 5 Suppl 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile Test on Friction Stir Welded AZ31B and AZ91B Magnesium Alloys\",\"authors\":\"M. Yugandhar, B. D. Naik, P. Kammar\",\"doi\":\"10.4273/ijvss.15.2.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rare earth materials containing magnesium alloy AZ91B and AZ31B is finding widespread use in the automotive, aerospace and military industries due to its greater strength-to-weight ratio and formability. Magnesium is typically regarded as difficult to fuse together through material fusion procedures due to flaws found in welding inclusions, porosity and welded junction distortions. Friction stir welding solid state joining procedure is used for Mg joining alloys successfully. The process variables influencing the combined characteristics of weldments include tool pin geometry, downward axial force, tool welding speed (rpm). In the current research, five distinct tool types were used to create friction stir weldment geometries. There were 18 trials overall with 3 components and 8 stages run in accordance with the primary composite design matrix. The information produced by a mathematical model through response surface approach was sufficient for the developed ANOVA was used to verify the model. Large interaction between welding parameters and tensile strength graphs are utilised to depict its behaviour. It was discovered that the cylindrical straight pin has the greatest tensile qualities. The mathematical model is beneficial for adjusting the tensile strength forecast to enhance the weld quality by choosing suitable process parameters for AZ31B and AZ91B welded magnesium alloys.\",\"PeriodicalId\":14391,\"journal\":{\"name\":\"International Journal of Vehicle Structures and Systems\",\"volume\":\"48 5 Suppl 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Structures and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4273/ijvss.15.2.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Structures and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4273/ijvss.15.2.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

含AZ91B和AZ31B镁合金的稀土材料因其具有较高的强度重量比和可成形性,在汽车、航空航天和军事工业中得到广泛应用。由于在焊接夹杂物、气孔和焊接接头变形中发现的缺陷,镁通常被认为是难以通过材料熔合过程融合在一起的。成功地将搅拌摩擦焊固态连接法应用于镁合金连接中。影响焊缝组合特性的工艺变量包括刀销几何形状、向下轴向力、刀具焊接速度(rpm)。在目前的研究中,使用了五种不同的工具类型来创建搅拌摩擦焊件的几何形状。根据主要的复合设计矩阵,总共进行了18项试验,包括3个组成部分和8个阶段。通过响应面方法建立的数学模型所产生的信息足以用于开发的方差分析来验证模型。焊接参数和抗拉强度图之间的大交互作用被用来描述其行为。结果表明,圆柱直销具有最佳的拉伸性能。该数学模型有利于AZ31B和AZ91B焊接镁合金通过选择合适的工艺参数来调整抗拉强度预测,从而提高焊缝质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensile Test on Friction Stir Welded AZ31B and AZ91B Magnesium Alloys
Rare earth materials containing magnesium alloy AZ91B and AZ31B is finding widespread use in the automotive, aerospace and military industries due to its greater strength-to-weight ratio and formability. Magnesium is typically regarded as difficult to fuse together through material fusion procedures due to flaws found in welding inclusions, porosity and welded junction distortions. Friction stir welding solid state joining procedure is used for Mg joining alloys successfully. The process variables influencing the combined characteristics of weldments include tool pin geometry, downward axial force, tool welding speed (rpm). In the current research, five distinct tool types were used to create friction stir weldment geometries. There were 18 trials overall with 3 components and 8 stages run in accordance with the primary composite design matrix. The information produced by a mathematical model through response surface approach was sufficient for the developed ANOVA was used to verify the model. Large interaction between welding parameters and tensile strength graphs are utilised to depict its behaviour. It was discovered that the cylindrical straight pin has the greatest tensile qualities. The mathematical model is beneficial for adjusting the tensile strength forecast to enhance the weld quality by choosing suitable process parameters for AZ31B and AZ91B welded magnesium alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Structures and Systems
International Journal of Vehicle Structures and Systems Engineering-Mechanical Engineering
CiteScore
0.90
自引率
0.00%
发文量
78
期刊介绍: The International Journal of Vehicle Structures and Systems (IJVSS) is a quarterly journal and is published by MechAero Foundation for Technical Research and Education Excellence (MAFTREE), based in Chennai, India. MAFTREE is engaged in promoting the advancement of technical research and education in the field of mechanical, aerospace, automotive and its related branches of engineering, science, and technology. IJVSS disseminates high quality original research and review papers, case studies, technical notes and book reviews. All published papers in this journal will have undergone rigorous peer review. IJVSS was founded in 2009. IJVSS is available in Print (ISSN 0975-3060) and Online (ISSN 0975-3540) versions. The prime focus of the IJVSS is given to the subjects of modelling, analysis, design, simulation, optimization and testing of structures and systems of the following: 1. Automotive vehicle including scooter, auto, car, motor sport and racing vehicles, 2. Truck, trailer and heavy vehicles for road transport, 3. Rail, bus, tram, emerging transit and hybrid vehicle, 4. Terrain vehicle, armoured vehicle, construction vehicle and Unmanned Ground Vehicle, 5. Aircraft, launch vehicle, missile, airship, spacecraft, space exploration vehicle, 6. Unmanned Aerial Vehicle, Micro Aerial Vehicle, 7. Marine vehicle, ship and yachts and under water vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信