{"title":"癌症治疗中的siRNA传递系统","authors":"H. Hosseinkhani","doi":"10.19080/omcij.2020.12.555776","DOIUrl":null,"url":null,"abstract":"Drug delivery systems (DDS) have shown great promise in delivery of drugs and genetic materials or pharmaceuticals and other xenobiotics to their site of action within an organism and eliminate the side effect and enhance the therapeutic effects of the drugs at exact delivery position. Small interfering RNA (siRNA) is a class of nucleic acid-based drugs able to suppress gene expression by interaction with mRNA before its translation. The primary success of siRNA delivery greatly depends on suitable vectors to deliver therapeutic genes. The main problems in the delivery of siRNA-based drugs for therapeutic use are the low efficiency of siRNA delivery to target cells and tissues. This review articles discusses the recent technology of siRNA delivery systems using new biomaterials and nanoparticles. macular degeneration, diabetic macular edema, respiratory virus infection, pachyonychia congenital, hepatitis, human immunodeficiency virus infection, and cancer. There are several obstacles and concerns that should be overcome before RNAi will be used as a new therapeutic technique.","PeriodicalId":19547,"journal":{"name":"Organic & Medicinal Chemistry International Journal","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"siRNA Delivery Systems in Cancer Therapy\",\"authors\":\"H. Hosseinkhani\",\"doi\":\"10.19080/omcij.2020.12.555776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug delivery systems (DDS) have shown great promise in delivery of drugs and genetic materials or pharmaceuticals and other xenobiotics to their site of action within an organism and eliminate the side effect and enhance the therapeutic effects of the drugs at exact delivery position. Small interfering RNA (siRNA) is a class of nucleic acid-based drugs able to suppress gene expression by interaction with mRNA before its translation. The primary success of siRNA delivery greatly depends on suitable vectors to deliver therapeutic genes. The main problems in the delivery of siRNA-based drugs for therapeutic use are the low efficiency of siRNA delivery to target cells and tissues. This review articles discusses the recent technology of siRNA delivery systems using new biomaterials and nanoparticles. macular degeneration, diabetic macular edema, respiratory virus infection, pachyonychia congenital, hepatitis, human immunodeficiency virus infection, and cancer. There are several obstacles and concerns that should be overcome before RNAi will be used as a new therapeutic technique.\",\"PeriodicalId\":19547,\"journal\":{\"name\":\"Organic & Medicinal Chemistry International Journal\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Medicinal Chemistry International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19080/omcij.2020.12.555776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Medicinal Chemistry International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/omcij.2020.12.555776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Drug delivery systems (DDS) have shown great promise in delivery of drugs and genetic materials or pharmaceuticals and other xenobiotics to their site of action within an organism and eliminate the side effect and enhance the therapeutic effects of the drugs at exact delivery position. Small interfering RNA (siRNA) is a class of nucleic acid-based drugs able to suppress gene expression by interaction with mRNA before its translation. The primary success of siRNA delivery greatly depends on suitable vectors to deliver therapeutic genes. The main problems in the delivery of siRNA-based drugs for therapeutic use are the low efficiency of siRNA delivery to target cells and tissues. This review articles discusses the recent technology of siRNA delivery systems using new biomaterials and nanoparticles. macular degeneration, diabetic macular edema, respiratory virus infection, pachyonychia congenital, hepatitis, human immunodeficiency virus infection, and cancer. There are several obstacles and concerns that should be overcome before RNAi will be used as a new therapeutic technique.