好吧,绿树成荫

Razika Boutrig, M. Chellali
{"title":"好吧,绿树成荫","authors":"Razika Boutrig, M. Chellali","doi":"10.1051/ro/2023088","DOIUrl":null,"url":null,"abstract":"An edge in a graph G = (V, E) is said to ev-dominate the vertices incident to it as well as the vertices adjacent to these incident vertices. A subset F ⊆ E is an edge-vertex dominating set (or simply, ev-dominating set) if every vertex is ev-dominated by at least one edge of F. The ev-domination number γev(G) is the minimum cardinality of a ev-dominating set of G. An ev-dominating set is independent if its edges are independent. The independent ev-domination number iev(G) is the minimum cardinality of an independent ev-dominating set and the upper independent ev-domination number βev(G) is the maximum cardinality of a minimal independent ev-dominating set of G. In this paper, we show that for every nontrivial tree T, γev(T) = iev(T) ≤ γ(T) ≤ βev(T), where γ(T) is the domination number of T. Moreover, we provide a characterization of all trees T with iev(T) = βev(T), which we call well ev-covered trees, as well as a characterization of all trees T with γev(T) = iev(T) = γ(T).","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well ev-covered trees\",\"authors\":\"Razika Boutrig, M. Chellali\",\"doi\":\"10.1051/ro/2023088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An edge in a graph G = (V, E) is said to ev-dominate the vertices incident to it as well as the vertices adjacent to these incident vertices. A subset F ⊆ E is an edge-vertex dominating set (or simply, ev-dominating set) if every vertex is ev-dominated by at least one edge of F. The ev-domination number γev(G) is the minimum cardinality of a ev-dominating set of G. An ev-dominating set is independent if its edges are independent. The independent ev-domination number iev(G) is the minimum cardinality of an independent ev-dominating set and the upper independent ev-domination number βev(G) is the maximum cardinality of a minimal independent ev-dominating set of G. In this paper, we show that for every nontrivial tree T, γev(T) = iev(T) ≤ γ(T) ≤ βev(T), where γ(T) is the domination number of T. Moreover, we provide a characterization of all trees T with iev(T) = βev(T), which we call well ev-covered trees, as well as a characterization of all trees T with γev(T) = iev(T) = γ(T).\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在图G = (V, E)中的一条边被称为V -支配与它相关的顶点以及与这些相关顶点相邻的顶点。如果每个顶点被F的至少一条边ev控制,则子集F≥E是边-顶点控制集(或简单地说,ev控制集),ev控制数γev(G)是G的ev控制集的最小基数。如果其边是独立的,则ev控制集是独立的。独立ev-支配数iev(G)是独立ev-支配集的最小cardinality,而上独立ev-支配数βev(G)是最小独立ev-支配集G的最大cardinality。本文证明了对于每一个非普通树T, γev(T) = iev(T)≤γ(T)≤βev(T),其中γ(T)为T的支配数,并给出了所有树T具有iev(T) = βev(T)的刻画,我们称之为好ev-covered树。以及所有树T具有γev(T) = iev(T) = γ(T)的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well ev-covered trees
An edge in a graph G = (V, E) is said to ev-dominate the vertices incident to it as well as the vertices adjacent to these incident vertices. A subset F ⊆ E is an edge-vertex dominating set (or simply, ev-dominating set) if every vertex is ev-dominated by at least one edge of F. The ev-domination number γev(G) is the minimum cardinality of a ev-dominating set of G. An ev-dominating set is independent if its edges are independent. The independent ev-domination number iev(G) is the minimum cardinality of an independent ev-dominating set and the upper independent ev-domination number βev(G) is the maximum cardinality of a minimal independent ev-dominating set of G. In this paper, we show that for every nontrivial tree T, γev(T) = iev(T) ≤ γ(T) ≤ βev(T), where γ(T) is the domination number of T. Moreover, we provide a characterization of all trees T with iev(T) = βev(T), which we call well ev-covered trees, as well as a characterization of all trees T with γev(T) = iev(T) = γ(T).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信