通过结合轨迹状态估计来改进接触分类

E. Hanusa, D. Krout
{"title":"通过结合轨迹状态估计来改进接触分类","authors":"E. Hanusa, D. Krout","doi":"10.23919/OCEANS.2011.6107126","DOIUrl":null,"url":null,"abstract":"This paper presents a method for using information from tracking to improve the results of contact classification. An Extended Kalman Filter is used to predict the target's state (position and velocity) at the current time. The predicted state is used to estimate the target's aspect and heading. The estimate is used in tandem with aspect-dependent features (Doppler and target strength) to classify contacts as targets or clutter. Results on three simulated datasets show that using the velocity estimate and the covariance from the track state results in increased classification accuracy.","PeriodicalId":19442,"journal":{"name":"OCEANS'11 MTS/IEEE KONA","volume":"56 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving contact classification by incorporating an estimate of aspect from track state\",\"authors\":\"E. Hanusa, D. Krout\",\"doi\":\"10.23919/OCEANS.2011.6107126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for using information from tracking to improve the results of contact classification. An Extended Kalman Filter is used to predict the target's state (position and velocity) at the current time. The predicted state is used to estimate the target's aspect and heading. The estimate is used in tandem with aspect-dependent features (Doppler and target strength) to classify contacts as targets or clutter. Results on three simulated datasets show that using the velocity estimate and the covariance from the track state results in increased classification accuracy.\",\"PeriodicalId\":19442,\"journal\":{\"name\":\"OCEANS'11 MTS/IEEE KONA\",\"volume\":\"56 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS'11 MTS/IEEE KONA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OCEANS.2011.6107126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS'11 MTS/IEEE KONA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2011.6107126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种利用跟踪信息改进接触分类结果的方法。扩展卡尔曼滤波用于预测目标在当前时刻的状态(位置和速度)。预测状态用于估计目标的方向和航向。该估计与方面相关特征(多普勒和目标强度)串联使用,以将接触分类为目标或杂波。在三个模拟数据集上的结果表明,使用速度估计和轨道状态的协方差可以提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving contact classification by incorporating an estimate of aspect from track state
This paper presents a method for using information from tracking to improve the results of contact classification. An Extended Kalman Filter is used to predict the target's state (position and velocity) at the current time. The predicted state is used to estimate the target's aspect and heading. The estimate is used in tandem with aspect-dependent features (Doppler and target strength) to classify contacts as targets or clutter. Results on three simulated datasets show that using the velocity estimate and the covariance from the track state results in increased classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信