热力学第一定律的分析力学方法和变分层次结构的构造

IF 0.7 Q4 MECHANICS
H. Said
{"title":"热力学第一定律的分析力学方法和变分层次结构的构造","authors":"H. Said","doi":"10.2298/tam200315011s","DOIUrl":null,"url":null,"abstract":"A simple procedure is presented for the study of the conservation of energy equation with dissipation in continuum mechanics in 1D. This procedure is used to transform this nonlinear evolution-diffusion equation into a hyperbolic PDE; specifically, a second-order quasi-linear wave equation. An immediate implication of this procedure is the formation of a least action principle for the balance of energy with dissipation. The corresponding action functional enables us to establish a complete analytic mechanics for thermomechanical systems: a Lagrangian?Hamiltonian theory, integrals of motion, bracket formalism, and Noether?s theorem. Furthermore, we apply our procedure iteratively and produce an infinite sequence of interlocked variational principles, a variational hierarchy, where at each level or iteration the full implication of the least action principle can be shown again.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"10 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical mechanics approach to the first law of thermodynamics and construction of a variational hierarchy\",\"authors\":\"H. Said\",\"doi\":\"10.2298/tam200315011s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple procedure is presented for the study of the conservation of energy equation with dissipation in continuum mechanics in 1D. This procedure is used to transform this nonlinear evolution-diffusion equation into a hyperbolic PDE; specifically, a second-order quasi-linear wave equation. An immediate implication of this procedure is the formation of a least action principle for the balance of energy with dissipation. The corresponding action functional enables us to establish a complete analytic mechanics for thermomechanical systems: a Lagrangian?Hamiltonian theory, integrals of motion, bracket formalism, and Noether?s theorem. Furthermore, we apply our procedure iteratively and produce an infinite sequence of interlocked variational principles, a variational hierarchy, where at each level or iteration the full implication of the least action principle can be shown again.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam200315011s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam200315011s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了一维连续介质力学中带耗散的能量守恒方程的一个简单方法。利用该方法将非线性演化扩散方程转化为双曲偏微分方程;具体来说,二阶拟线性波动方程。这个过程的直接含义是形成能量与耗散平衡的最小作用原理。相应的作用泛函使我们能够建立一个完整的热力系统解析力学:拉格朗日?哈密顿理论,运动积分,托架形式论,还有诺特?年代定理。此外,我们迭代地应用我们的过程,并产生一个连锁变分原理的无限序列,一个变分层次结构,在每个层次或迭代中,最小作用原理的全部含义可以再次显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analytical mechanics approach to the first law of thermodynamics and construction of a variational hierarchy
A simple procedure is presented for the study of the conservation of energy equation with dissipation in continuum mechanics in 1D. This procedure is used to transform this nonlinear evolution-diffusion equation into a hyperbolic PDE; specifically, a second-order quasi-linear wave equation. An immediate implication of this procedure is the formation of a least action principle for the balance of energy with dissipation. The corresponding action functional enables us to establish a complete analytic mechanics for thermomechanical systems: a Lagrangian?Hamiltonian theory, integrals of motion, bracket formalism, and Noether?s theorem. Furthermore, we apply our procedure iteratively and produce an infinite sequence of interlocked variational principles, a variational hierarchy, where at each level or iteration the full implication of the least action principle can be shown again.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信