从多个视频中发现铰接对象类的物理部分

Luca Del Pero, Susanna Ricco, R. Sukthankar, V. Ferrari
{"title":"从多个视频中发现铰接对象类的物理部分","authors":"Luca Del Pero, Susanna Ricco, R. Sukthankar, V. Ferrari","doi":"10.1109/CVPR.2016.84","DOIUrl":null,"url":null,"abstract":"We propose a motion-based method to discover the physical parts of an articulated object class (e.g. head/torso/leg of a horse) from multiple videos. The key is to find object regions that exhibit consistent motion relative to the rest of the object, across multiple videos. We can then learn a location model for the parts and segment them accurately in the individual videos using an energy function that also enforces temporal and spatial consistency in part motion. Unlike our approach, traditional methods for motion segmentation or non-rigid structure from motion operate on one video at a time. Hence they cannot discover a part unless it displays independent motion in that particular video. We evaluate our method on a new dataset of 32 videos of tigers and horses, where we significantly outperform a recent motion segmentation method on the task of part discovery (obtaining roughly twice the accuracy).","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"714-723"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Discovering the Physical Parts of an Articulated Object Class from Multiple Videos\",\"authors\":\"Luca Del Pero, Susanna Ricco, R. Sukthankar, V. Ferrari\",\"doi\":\"10.1109/CVPR.2016.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a motion-based method to discover the physical parts of an articulated object class (e.g. head/torso/leg of a horse) from multiple videos. The key is to find object regions that exhibit consistent motion relative to the rest of the object, across multiple videos. We can then learn a location model for the parts and segment them accurately in the individual videos using an energy function that also enforces temporal and spatial consistency in part motion. Unlike our approach, traditional methods for motion segmentation or non-rigid structure from motion operate on one video at a time. Hence they cannot discover a part unless it displays independent motion in that particular video. We evaluate our method on a new dataset of 32 videos of tigers and horses, where we significantly outperform a recent motion segmentation method on the task of part discovery (obtaining roughly twice the accuracy).\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"1 1\",\"pages\":\"714-723\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一种基于运动的方法来从多个视频中发现铰接对象类的物理部分(例如,马的头/躯干/腿)。关键是在多个视频中找到相对于物体其余部分表现出一致运动的物体区域。然后,我们可以学习零件的位置模型,并使用能量函数在单个视频中准确地分割它们,该函数还可以强制零件运动的时间和空间一致性。与我们的方法不同,传统的运动分割方法或来自运动的非刚性结构一次操作一个视频。因此,他们无法发现一个零件,除非它在特定的视频中显示独立的运动。我们在一个包含32个老虎和马视频的新数据集上评估了我们的方法,在零件发现任务上,我们明显优于最近的运动分割方法(获得大约两倍的精度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering the Physical Parts of an Articulated Object Class from Multiple Videos
We propose a motion-based method to discover the physical parts of an articulated object class (e.g. head/torso/leg of a horse) from multiple videos. The key is to find object regions that exhibit consistent motion relative to the rest of the object, across multiple videos. We can then learn a location model for the parts and segment them accurately in the individual videos using an energy function that also enforces temporal and spatial consistency in part motion. Unlike our approach, traditional methods for motion segmentation or non-rigid structure from motion operate on one video at a time. Hence they cannot discover a part unless it displays independent motion in that particular video. We evaluate our method on a new dataset of 32 videos of tigers and horses, where we significantly outperform a recent motion segmentation method on the task of part discovery (obtaining roughly twice the accuracy).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信