{"title":"自旋-1激励中时间对称性的四元数分析","authors":"Dalian Lu, Shahida Ali , David J Siminovitch","doi":"10.1006/jmra.1996.0194","DOIUrl":null,"url":null,"abstract":"<div><p>The role of time symmetry in composite-pulse design is examined by considering a phase-alternating composite pulse pair {π(<em>I</em>= <span><math><mtext>1</mtext><mtext>2</mtext></math></span>), π/2(<em>I</em>= 1)}, where the spin-1 excitation pulse has been derived from its spin-<span><math><mtext>1</mtext><mtext>2</mtext></math></span> progenitor by halving the pulse durations. The quaternion calculus is used to define the quaternion elements (Euler–Rodrigues parameters) of each composite pulse. In this manner, it is shown how an Euler–Rodrigues (ER) parametrization of the consecutive rotations implicit in each composite pulse can be used to derive simple phase and amplitude relationships between the members of such a {π(<em>I</em>= <span><math><mtext>1</mtext><mtext>2</mtext></math></span>), π/2(<em>I</em>= 1)} pulse pair. The simplicity and compactness of the ER parametrization is then used to identify optimal time-symmetric sequences for spin-1 excitation by using the Lagrange multiplier method.</p></div>","PeriodicalId":16165,"journal":{"name":"Journal of Magnetic Resonance, Series A","volume":"122 2","pages":"Pages 192-203"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/jmra.1996.0194","citationCount":"4","resultStr":"{\"title\":\"A Quaternion Analysis of Time Symmetry in Spin-1 Excitation\",\"authors\":\"Dalian Lu, Shahida Ali , David J Siminovitch\",\"doi\":\"10.1006/jmra.1996.0194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The role of time symmetry in composite-pulse design is examined by considering a phase-alternating composite pulse pair {π(<em>I</em>= <span><math><mtext>1</mtext><mtext>2</mtext></math></span>), π/2(<em>I</em>= 1)}, where the spin-1 excitation pulse has been derived from its spin-<span><math><mtext>1</mtext><mtext>2</mtext></math></span> progenitor by halving the pulse durations. The quaternion calculus is used to define the quaternion elements (Euler–Rodrigues parameters) of each composite pulse. In this manner, it is shown how an Euler–Rodrigues (ER) parametrization of the consecutive rotations implicit in each composite pulse can be used to derive simple phase and amplitude relationships between the members of such a {π(<em>I</em>= <span><math><mtext>1</mtext><mtext>2</mtext></math></span>), π/2(<em>I</em>= 1)} pulse pair. The simplicity and compactness of the ER parametrization is then used to identify optimal time-symmetric sequences for spin-1 excitation by using the Lagrange multiplier method.</p></div>\",\"PeriodicalId\":16165,\"journal\":{\"name\":\"Journal of Magnetic Resonance, Series A\",\"volume\":\"122 2\",\"pages\":\"Pages 192-203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/jmra.1996.0194\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance, Series A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1064185896901941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance, Series A","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1064185896901941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Quaternion Analysis of Time Symmetry in Spin-1 Excitation
The role of time symmetry in composite-pulse design is examined by considering a phase-alternating composite pulse pair {π(I= ), π/2(I= 1)}, where the spin-1 excitation pulse has been derived from its spin- progenitor by halving the pulse durations. The quaternion calculus is used to define the quaternion elements (Euler–Rodrigues parameters) of each composite pulse. In this manner, it is shown how an Euler–Rodrigues (ER) parametrization of the consecutive rotations implicit in each composite pulse can be used to derive simple phase and amplitude relationships between the members of such a {π(I= ), π/2(I= 1)} pulse pair. The simplicity and compactness of the ER parametrization is then used to identify optimal time-symmetric sequences for spin-1 excitation by using the Lagrange multiplier method.