自旋-1激励中时间对称性的四元数分析

Dalian Lu, Shahida Ali , David J Siminovitch
{"title":"自旋-1激励中时间对称性的四元数分析","authors":"Dalian Lu,&nbsp;Shahida Ali ,&nbsp;David J Siminovitch","doi":"10.1006/jmra.1996.0194","DOIUrl":null,"url":null,"abstract":"<div><p>The role of time symmetry in composite-pulse design is examined by considering a phase-alternating composite pulse pair {π(<em>I</em>= <span><math><mtext>1</mtext><mtext>2</mtext></math></span>), π/2(<em>I</em>= 1)}, where the spin-1 excitation pulse has been derived from its spin-<span><math><mtext>1</mtext><mtext>2</mtext></math></span> progenitor by halving the pulse durations. The quaternion calculus is used to define the quaternion elements (Euler–Rodrigues parameters) of each composite pulse. In this manner, it is shown how an Euler–Rodrigues (ER) parametrization of the consecutive rotations implicit in each composite pulse can be used to derive simple phase and amplitude relationships between the members of such a {π(<em>I</em>= <span><math><mtext>1</mtext><mtext>2</mtext></math></span>), π/2(<em>I</em>= 1)} pulse pair. The simplicity and compactness of the ER parametrization is then used to identify optimal time-symmetric sequences for spin-1 excitation by using the Lagrange multiplier method.</p></div>","PeriodicalId":16165,"journal":{"name":"Journal of Magnetic Resonance, Series A","volume":"122 2","pages":"Pages 192-203"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/jmra.1996.0194","citationCount":"4","resultStr":"{\"title\":\"A Quaternion Analysis of Time Symmetry in Spin-1 Excitation\",\"authors\":\"Dalian Lu,&nbsp;Shahida Ali ,&nbsp;David J Siminovitch\",\"doi\":\"10.1006/jmra.1996.0194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The role of time symmetry in composite-pulse design is examined by considering a phase-alternating composite pulse pair {π(<em>I</em>= <span><math><mtext>1</mtext><mtext>2</mtext></math></span>), π/2(<em>I</em>= 1)}, where the spin-1 excitation pulse has been derived from its spin-<span><math><mtext>1</mtext><mtext>2</mtext></math></span> progenitor by halving the pulse durations. The quaternion calculus is used to define the quaternion elements (Euler–Rodrigues parameters) of each composite pulse. In this manner, it is shown how an Euler–Rodrigues (ER) parametrization of the consecutive rotations implicit in each composite pulse can be used to derive simple phase and amplitude relationships between the members of such a {π(<em>I</em>= <span><math><mtext>1</mtext><mtext>2</mtext></math></span>), π/2(<em>I</em>= 1)} pulse pair. The simplicity and compactness of the ER parametrization is then used to identify optimal time-symmetric sequences for spin-1 excitation by using the Lagrange multiplier method.</p></div>\",\"PeriodicalId\":16165,\"journal\":{\"name\":\"Journal of Magnetic Resonance, Series A\",\"volume\":\"122 2\",\"pages\":\"Pages 192-203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/jmra.1996.0194\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance, Series A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1064185896901941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance, Series A","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1064185896901941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

通过考虑一个相位交替的复合脉冲对{π(I= 12), π/2(I= 1)},时间对称性在复合脉冲设计中的作用进行了检验,其中自旋-1激发脉冲是通过将脉冲持续时间减半而从自旋-12激发脉冲导出的。四元数演算用于定义每个复合脉冲的四元数元素(欧拉-罗德里格斯参数)。通过这种方式,展示了如何使用欧拉-罗德里格斯(ER)参数化的连续旋转隐含在每个复合脉冲可以推导出这样一个{π(I= 12), π/2(I= 1)}脉冲对的成员之间的简单相位和振幅关系。然后利用ER参数化的简单性和紧凑性,利用拉格朗日乘子方法确定自旋-1激励的最优时间对称序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quaternion Analysis of Time Symmetry in Spin-1 Excitation

The role of time symmetry in composite-pulse design is examined by considering a phase-alternating composite pulse pair {π(I= 12), π/2(I= 1)}, where the spin-1 excitation pulse has been derived from its spin-12 progenitor by halving the pulse durations. The quaternion calculus is used to define the quaternion elements (Euler–Rodrigues parameters) of each composite pulse. In this manner, it is shown how an Euler–Rodrigues (ER) parametrization of the consecutive rotations implicit in each composite pulse can be used to derive simple phase and amplitude relationships between the members of such a {π(I= 12), π/2(I= 1)} pulse pair. The simplicity and compactness of the ER parametrization is then used to identify optimal time-symmetric sequences for spin-1 excitation by using the Lagrange multiplier method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信