基于粒径控制的废纸桑树水蒸气吸附解吸性能分析

K. Jo, Tae-yeon Kim, S. Seo, Oh-Kyu Lee, Yong-sik Chu
{"title":"基于粒径控制的废纸桑树水蒸气吸附解吸性能分析","authors":"K. Jo, Tae-yeon Kim, S. Seo, Oh-Kyu Lee, Yong-sik Chu","doi":"10.7844/KIRR.2020.29.2.8","DOIUrl":null,"url":null,"abstract":"In this study, adsorption and desorption characteristics of pulverized waste paper-mulberry pellet and bast fiber were measured to confirm the applicability to humidity control products. Paper-mulberry powder was classified by 710-355μm, 355-100μm, 100-45μm and less than 45μm and used in experiment. Specific surface area increased from 1.02m2/g to 1.35m2/g as the particle size decreased from 710μm to under 45μm. Adsorption and desorption performance decreased in the order of 355-100 μm, 710-355μm, 100-45μm, less than 45μm and bast fiber, adsorption content on each particle sizes were 141.1g/m2, 147.1g/m2, 135.7g/m2, 129.0g/m2 and desorption content were 117.2g/m2, 123.6g/m2, 110.2g/m2, 93.3g/m2. As a result, adsorption and desorption performance of paper-mulberry powder were superior to those of the bast fiber and these phenomenon can be considered that it caused by pore distribution in pellet and damage of fiber.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis for Water Vapour Adsorption and Desorption Performance of Waste Paper-Mulberry according to Particle Size Control\",\"authors\":\"K. Jo, Tae-yeon Kim, S. Seo, Oh-Kyu Lee, Yong-sik Chu\",\"doi\":\"10.7844/KIRR.2020.29.2.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, adsorption and desorption characteristics of pulverized waste paper-mulberry pellet and bast fiber were measured to confirm the applicability to humidity control products. Paper-mulberry powder was classified by 710-355μm, 355-100μm, 100-45μm and less than 45μm and used in experiment. Specific surface area increased from 1.02m2/g to 1.35m2/g as the particle size decreased from 710μm to under 45μm. Adsorption and desorption performance decreased in the order of 355-100 μm, 710-355μm, 100-45μm, less than 45μm and bast fiber, adsorption content on each particle sizes were 141.1g/m2, 147.1g/m2, 135.7g/m2, 129.0g/m2 and desorption content were 117.2g/m2, 123.6g/m2, 110.2g/m2, 93.3g/m2. As a result, adsorption and desorption performance of paper-mulberry powder were superior to those of the bast fiber and these phenomenon can be considered that it caused by pore distribution in pellet and damage of fiber.\",\"PeriodicalId\":17385,\"journal\":{\"name\":\"Journal of the Korean Institute of Resources Recycling\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Institute of Resources Recycling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7844/KIRR.2020.29.2.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Institute of Resources Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7844/KIRR.2020.29.2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究通过对废纸、桑葚颗粒和韧皮纤维的吸附和解吸特性进行测试,以确定其在湿度控制产品中的适用性。纸桑粉按710 ~ 355μm、355 ~ 100μm、100 ~ 45μm和小于45μm进行分类,并用于实验。随着粒径从710μm减小到45μm以下,比表面积从1.02m2/g增加到1.35m2/g。吸附和解吸性能依次为355 ~ 100 μm、710 ~ 355μm、100 ~ 45μm、小于45μm和韧皮纤维,各粒径上吸附量分别为141.1g/m2、147.1g/m2、135.7g/m2、129.0g/m2,解吸量分别为117.2g/m2、123.6g/m2、110.2g/m2、93.3g/m2。结果表明,纸桑粉的吸附和解吸性能优于韧皮纤维,这些现象可以认为是由于球团中的孔隙分布和纤维的损伤所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis for Water Vapour Adsorption and Desorption Performance of Waste Paper-Mulberry according to Particle Size Control
In this study, adsorption and desorption characteristics of pulverized waste paper-mulberry pellet and bast fiber were measured to confirm the applicability to humidity control products. Paper-mulberry powder was classified by 710-355μm, 355-100μm, 100-45μm and less than 45μm and used in experiment. Specific surface area increased from 1.02m2/g to 1.35m2/g as the particle size decreased from 710μm to under 45μm. Adsorption and desorption performance decreased in the order of 355-100 μm, 710-355μm, 100-45μm, less than 45μm and bast fiber, adsorption content on each particle sizes were 141.1g/m2, 147.1g/m2, 135.7g/m2, 129.0g/m2 and desorption content were 117.2g/m2, 123.6g/m2, 110.2g/m2, 93.3g/m2. As a result, adsorption and desorption performance of paper-mulberry powder were superior to those of the bast fiber and these phenomenon can be considered that it caused by pore distribution in pellet and damage of fiber.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信