基于极值混合模型的数据驱动端到端延迟违反概率预测

S. Mostafavi, G. Dán, James Gross
{"title":"基于极值混合模型的数据驱动端到端延迟违反概率预测","authors":"S. Mostafavi, G. Dán, James Gross","doi":"10.1145/3453142.3493506","DOIUrl":null,"url":null,"abstract":"With the advent of edge computing, there is increasing interest in wireless latency-critical services. Such applications require the end-to-end delay of the network infrastructure (communication and computation) to be less than a target delay with a certain probability, e.g., 10-2-10-5. To deal with this guarantee level, the first step is to predict the transient delay violation probability (DVP) of the packets traversing the network. The guarantee level puts a threshold on the tail of the end-to-end delay distribution; thus, it makes data-driven DVP prediction a challenging task. We propose to use the extreme value mixture model in the mixture density network (MDN) method for this task. We implemented it in a multi-hop queuing-theoretic system to predict the DVP of each packet from the network state variables. This work is a first step toward utilizing the DVP predictions, possibly in the resource allocation scheme or queuing discipline. Numerically, we show that our proposed approach outperforms state-of-the-art Gaussian mixture model-based predictors by orders of magnitude, in particular for scenarios with guarantee levels above 10−2.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"19 1","pages":"416-422"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data-Driven End-to-End Delay Violation Probability Prediction with Extreme Value Mixture Models\",\"authors\":\"S. Mostafavi, G. Dán, James Gross\",\"doi\":\"10.1145/3453142.3493506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of edge computing, there is increasing interest in wireless latency-critical services. Such applications require the end-to-end delay of the network infrastructure (communication and computation) to be less than a target delay with a certain probability, e.g., 10-2-10-5. To deal with this guarantee level, the first step is to predict the transient delay violation probability (DVP) of the packets traversing the network. The guarantee level puts a threshold on the tail of the end-to-end delay distribution; thus, it makes data-driven DVP prediction a challenging task. We propose to use the extreme value mixture model in the mixture density network (MDN) method for this task. We implemented it in a multi-hop queuing-theoretic system to predict the DVP of each packet from the network state variables. This work is a first step toward utilizing the DVP predictions, possibly in the resource allocation scheme or queuing discipline. Numerically, we show that our proposed approach outperforms state-of-the-art Gaussian mixture model-based predictors by orders of magnitude, in particular for scenarios with guarantee levels above 10−2.\",\"PeriodicalId\":6779,\"journal\":{\"name\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"19 1\",\"pages\":\"416-422\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453142.3493506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3493506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着边缘计算的出现,人们对无线延迟关键服务的兴趣越来越大。此类应用要求网络基础设施(通信和计算)的端到端延迟以一定的概率小于目标延迟,例如10-2-10-5。为了处理这一保证级别,首先要预测经过网络的数据包的瞬态延迟违反概率(DVP)。保证级别在端到端延迟分布的尾部设置一个阈值;因此,它使数据驱动的DVP预测成为一项具有挑战性的任务。我们建议使用混合密度网络(MDN)方法中的极值混合模型来完成这项任务。我们在一个多跳队列理论系统中实现它,从网络状态变量中预测每个数据包的DVP。这项工作是利用DVP预测的第一步,可能在资源分配方案或排队规则中。在数值上,我们表明我们提出的方法在数量级上优于最先进的基于高斯混合模型的预测器,特别是对于保证水平高于10−2的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven End-to-End Delay Violation Probability Prediction with Extreme Value Mixture Models
With the advent of edge computing, there is increasing interest in wireless latency-critical services. Such applications require the end-to-end delay of the network infrastructure (communication and computation) to be less than a target delay with a certain probability, e.g., 10-2-10-5. To deal with this guarantee level, the first step is to predict the transient delay violation probability (DVP) of the packets traversing the network. The guarantee level puts a threshold on the tail of the end-to-end delay distribution; thus, it makes data-driven DVP prediction a challenging task. We propose to use the extreme value mixture model in the mixture density network (MDN) method for this task. We implemented it in a multi-hop queuing-theoretic system to predict the DVP of each packet from the network state variables. This work is a first step toward utilizing the DVP predictions, possibly in the resource allocation scheme or queuing discipline. Numerically, we show that our proposed approach outperforms state-of-the-art Gaussian mixture model-based predictors by orders of magnitude, in particular for scenarios with guarantee levels above 10−2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信