实时目标跟踪的粒子滤波自适应进化策略

Clementine Nyirarugira, Taeyong Kim
{"title":"实时目标跟踪的粒子滤波自适应进化策略","authors":"Clementine Nyirarugira, Taeyong Kim","doi":"10.1109/ICCE.2013.6486784","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient real time tracker that uses a differential evolution strategy within the particle filter framework. Particles are strategically propagated based on the maximum a posterior (most likely) object location with genetic operators. This enables the use of a small sample size and alleviates the frequent sample degeneracy and impoverishment problems encountered in particle filters. We reduce the sample size considerable while improving the trackers accuracy. This makes the proposed tracker a good candidate for real time object tracking or an embedded resource constrained tracker.","PeriodicalId":6432,"journal":{"name":"2013 IEEE International Conference on Consumer Electronics (ICCE)","volume":"33 1","pages":"35-36"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive evolutional strategy of particle filter for real time object tracking\",\"authors\":\"Clementine Nyirarugira, Taeyong Kim\",\"doi\":\"10.1109/ICCE.2013.6486784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient real time tracker that uses a differential evolution strategy within the particle filter framework. Particles are strategically propagated based on the maximum a posterior (most likely) object location with genetic operators. This enables the use of a small sample size and alleviates the frequent sample degeneracy and impoverishment problems encountered in particle filters. We reduce the sample size considerable while improving the trackers accuracy. This makes the proposed tracker a good candidate for real time object tracking or an embedded resource constrained tracker.\",\"PeriodicalId\":6432,\"journal\":{\"name\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"33 1\",\"pages\":\"35-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2013.6486784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2013.6486784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种在粒子滤波框架内使用差分进化策略的高效实时跟踪器。利用遗传算子,基于最大后验(最可能)目标定位策略来传播粒子。这使得使用小样本量和减轻频繁的样本退化和贫困问题遇到的粒子过滤器。我们大大减少了样本数量,同时提高了跟踪器的精度。这使得所提出的跟踪器成为实时对象跟踪或嵌入式资源约束跟踪器的良好候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive evolutional strategy of particle filter for real time object tracking
In this paper, we propose an efficient real time tracker that uses a differential evolution strategy within the particle filter framework. Particles are strategically propagated based on the maximum a posterior (most likely) object location with genetic operators. This enables the use of a small sample size and alleviates the frequent sample degeneracy and impoverishment problems encountered in particle filters. We reduce the sample size considerable while improving the trackers accuracy. This makes the proposed tracker a good candidate for real time object tracking or an embedded resource constrained tracker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信