凸性在平方损失学习中的重要性

Wee Sun Lee, P. Bartlett, R. C. Williamson
{"title":"凸性在平方损失学习中的重要性","authors":"Wee Sun Lee, P. Bartlett, R. C. Williamson","doi":"10.1145/238061.238082","DOIUrl":null,"url":null,"abstract":"We show that if the closure of a function class under the metric induced by some probability distribution is not convex, then the sample complexity for agnostically learning with squared loss (using only hypotheses in )i s where is the probability of success and is the required accuracy. In comparison, if the class is convex and has finite pseudodimension, then the sample complexity is . If a nonconvex class has finite pseudodimension, then the sample complexity for agnostically learning the closure of the convex hull of ,i s . Hence, for agnostic learning, learning the convex hull provides better approximation capabilities with little sample complexity penalty.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"53 1","pages":"1974-1980"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"The importance of convexity in learning with squared loss\",\"authors\":\"Wee Sun Lee, P. Bartlett, R. C. Williamson\",\"doi\":\"10.1145/238061.238082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if the closure of a function class under the metric induced by some probability distribution is not convex, then the sample complexity for agnostically learning with squared loss (using only hypotheses in )i s where is the probability of success and is the required accuracy. In comparison, if the class is convex and has finite pseudodimension, then the sample complexity is . If a nonconvex class has finite pseudodimension, then the sample complexity for agnostically learning the closure of the convex hull of ,i s . Hence, for agnostic learning, learning the convex hull provides better approximation capabilities with little sample complexity penalty.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"53 1\",\"pages\":\"1974-1980\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/238061.238082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/238061.238082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

摘要

我们证明,如果函数类在某些概率分布诱导的度量下的闭包不是凸的,那么具有平方损失(仅使用假设)的不可知论学习的样本复杂度为成功的概率和所需的精度。相比之下,如果类是凸的且伪维数有限,则样本复杂度为。如果非凸类具有有限的伪维数,则不可知性地学习其凸包闭包的样本复杂度为1。因此,对于不可知论学习,学习凸包提供了更好的近似能力,并且样本复杂度损失很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The importance of convexity in learning with squared loss
We show that if the closure of a function class under the metric induced by some probability distribution is not convex, then the sample complexity for agnostically learning with squared loss (using only hypotheses in )i s where is the probability of success and is the required accuracy. In comparison, if the class is convex and has finite pseudodimension, then the sample complexity is . If a nonconvex class has finite pseudodimension, then the sample complexity for agnostically learning the closure of the convex hull of ,i s . Hence, for agnostic learning, learning the convex hull provides better approximation capabilities with little sample complexity penalty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信