S. Adhikary, Samiran Chattopadhyay, B. Ghosh, S. Choudhury, S. Nath, Nilkantha Garain
{"title":"利用最优中继节点数提高网络寿命的无线体域网络可靠路由","authors":"S. Adhikary, Samiran Chattopadhyay, B. Ghosh, S. Choudhury, S. Nath, Nilkantha Garain","doi":"10.3233/ais-210055","DOIUrl":null,"url":null,"abstract":"Wireless Body Area Network (WBAN) is an emerging technology that has the potential to redefine healthcare sector around the world. It can perform proactively by ubiquitously monitoring human health. But its enormous scope is challenged by limited battery power of the sensors, energy and bandwidth. Moreover, the random motion of human beings makes sensor positioning difficult and restricts efficiently routing of critical health parameter values. State of the art protocols do not address the adverse effects of heating of the implanted sensors on human tissues along with energy constraints and interference issues simultaneously. This paper handles all these issues jointly by designing a topology which has an optimized number of relay nodes and then proposes an efficient routing algorithm. Relay nodes are incorporated to frame the backbone of the connected wireless network so that all sensor nodes are coupled with at least one relay node and none of the nodes in the network remain isolated. In the proposed method, the remaining energy of the in-vivo sensors are dissipated intelligently and homogeneously so that network lifetime is enhanced without compromising reliability. Moreover, in our method, multicasting has been used to reduce transmission of unnecessary packets. Our design also leads to minimum hop count from body sensors to the sink node. The effectiveness and feasibility of our proposed approach has been evaluated and analyzed through numerous simulations. The analysis illustrates the efficacy of the proposed solution in terms of delay, network lifetime, energy efficiency, SAR and throughput.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"126 1","pages":"135-153"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reliable routing in Wireless Body Area Network using optimum number of relay nodes for enhancing network lifetime\",\"authors\":\"S. Adhikary, Samiran Chattopadhyay, B. Ghosh, S. Choudhury, S. Nath, Nilkantha Garain\",\"doi\":\"10.3233/ais-210055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Body Area Network (WBAN) is an emerging technology that has the potential to redefine healthcare sector around the world. It can perform proactively by ubiquitously monitoring human health. But its enormous scope is challenged by limited battery power of the sensors, energy and bandwidth. Moreover, the random motion of human beings makes sensor positioning difficult and restricts efficiently routing of critical health parameter values. State of the art protocols do not address the adverse effects of heating of the implanted sensors on human tissues along with energy constraints and interference issues simultaneously. This paper handles all these issues jointly by designing a topology which has an optimized number of relay nodes and then proposes an efficient routing algorithm. Relay nodes are incorporated to frame the backbone of the connected wireless network so that all sensor nodes are coupled with at least one relay node and none of the nodes in the network remain isolated. In the proposed method, the remaining energy of the in-vivo sensors are dissipated intelligently and homogeneously so that network lifetime is enhanced without compromising reliability. Moreover, in our method, multicasting has been used to reduce transmission of unnecessary packets. Our design also leads to minimum hop count from body sensors to the sink node. The effectiveness and feasibility of our proposed approach has been evaluated and analyzed through numerous simulations. The analysis illustrates the efficacy of the proposed solution in terms of delay, network lifetime, energy efficiency, SAR and throughput.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"126 1\",\"pages\":\"135-153\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-210055\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-210055","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Reliable routing in Wireless Body Area Network using optimum number of relay nodes for enhancing network lifetime
Wireless Body Area Network (WBAN) is an emerging technology that has the potential to redefine healthcare sector around the world. It can perform proactively by ubiquitously monitoring human health. But its enormous scope is challenged by limited battery power of the sensors, energy and bandwidth. Moreover, the random motion of human beings makes sensor positioning difficult and restricts efficiently routing of critical health parameter values. State of the art protocols do not address the adverse effects of heating of the implanted sensors on human tissues along with energy constraints and interference issues simultaneously. This paper handles all these issues jointly by designing a topology which has an optimized number of relay nodes and then proposes an efficient routing algorithm. Relay nodes are incorporated to frame the backbone of the connected wireless network so that all sensor nodes are coupled with at least one relay node and none of the nodes in the network remain isolated. In the proposed method, the remaining energy of the in-vivo sensors are dissipated intelligently and homogeneously so that network lifetime is enhanced without compromising reliability. Moreover, in our method, multicasting has been used to reduce transmission of unnecessary packets. Our design also leads to minimum hop count from body sensors to the sink node. The effectiveness and feasibility of our proposed approach has been evaluated and analyzed through numerous simulations. The analysis illustrates the efficacy of the proposed solution in terms of delay, network lifetime, energy efficiency, SAR and throughput.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.