用协方差矩阵分解增强Capon的DOA算法性能

Naceur Aounallah
{"title":"用协方差矩阵分解增强Capon的DOA算法性能","authors":"Naceur Aounallah","doi":"10.3390/engproc2022014007","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of the direction of arrival (DOA) estimation for diverse systems of wireless communication using an antenna array. This study provides an improved version of Capon’s direction of arrival algorithm. In fact, the proposed version uses an upper-triangular matrix extracted from the covariance matrix instead of the entire covariance matrix. The simulation results demonstrate that our proposed scheme can significantly improve the accuracy of direction of arrival estimation with low computation complexity.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Performance Enhancement of Capon’s DOA Algorithm Using Covariance Matrix Decomposition\",\"authors\":\"Naceur Aounallah\",\"doi\":\"10.3390/engproc2022014007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of the direction of arrival (DOA) estimation for diverse systems of wireless communication using an antenna array. This study provides an improved version of Capon’s direction of arrival algorithm. In fact, the proposed version uses an upper-triangular matrix extracted from the covariance matrix instead of the entire covariance matrix. The simulation results demonstrate that our proposed scheme can significantly improve the accuracy of direction of arrival estimation with low computation complexity.\",\"PeriodicalId\":11748,\"journal\":{\"name\":\"Engineering Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/engproc2022014007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2022014007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了天线阵列无线通信系统的到达方向(DOA)估计问题。本研究提供了Capon到达方向算法的改进版本。实际上,建议的版本使用了从协方差矩阵中提取的上三角矩阵,而不是整个协方差矩阵。仿真结果表明,本文提出的方案可以显著提高到达方向估计的精度,且计算复杂度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Enhancement of Capon’s DOA Algorithm Using Covariance Matrix Decomposition
This paper deals with the problem of the direction of arrival (DOA) estimation for diverse systems of wireless communication using an antenna array. This study provides an improved version of Capon’s direction of arrival algorithm. In fact, the proposed version uses an upper-triangular matrix extracted from the covariance matrix instead of the entire covariance matrix. The simulation results demonstrate that our proposed scheme can significantly improve the accuracy of direction of arrival estimation with low computation complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信