具有Dzyaloshinskii-Moriya相互作用的铁磁海森堡模型

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
E. Albayrak
{"title":"具有Dzyaloshinskii-Moriya相互作用的铁磁海森堡模型","authors":"E. Albayrak","doi":"10.5488/CMP.25.33701","DOIUrl":null,"url":null,"abstract":"The spin-1/2 Heisenberg model is formulated in terms of a mean-field approximation (MFA) by using the matrix forms of spin operators Ŝx, Ŝy and Ŝz in three-dimensions. The considered Hamiltonian consists of bilinear exchange interaction parameters (Jx, Jy, Jz), Dzyaloshinskii-Moriya interactions (Δx, Δy, Δz) and external magnetic field components (Hx, Hy, Hz). The magnetization and its components are obtained in the MFA with the general anisotropic case with Jx ≠ Jy ≠ Jz for various values of coordination numbers q. Then, the thermal variations of magnetizations are investigated in detail to obtain the phase diagrams of the model for the isotropic case with Jx = Jy = Jz > 0. It is found that the model exhibits ferromagnetic, paramagnetic, random phase regions and an extra ferromagnetic phase at which the components of magnetizations present branching.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"84 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferromagnetic Heisenberg model with the Dzyaloshinskii-Moriya interaction\",\"authors\":\"E. Albayrak\",\"doi\":\"10.5488/CMP.25.33701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spin-1/2 Heisenberg model is formulated in terms of a mean-field approximation (MFA) by using the matrix forms of spin operators Ŝx, Ŝy and Ŝz in three-dimensions. The considered Hamiltonian consists of bilinear exchange interaction parameters (Jx, Jy, Jz), Dzyaloshinskii-Moriya interactions (Δx, Δy, Δz) and external magnetic field components (Hx, Hy, Hz). The magnetization and its components are obtained in the MFA with the general anisotropic case with Jx ≠ Jy ≠ Jz for various values of coordination numbers q. Then, the thermal variations of magnetizations are investigated in detail to obtain the phase diagrams of the model for the isotropic case with Jx = Jy = Jz > 0. It is found that the model exhibits ferromagnetic, paramagnetic, random phase regions and an extra ferromagnetic phase at which the components of magnetizations present branching.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.25.33701\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.25.33701","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

利用三维自旋算符Ŝx、Ŝy和Ŝz的矩阵形式,用平均场近似(MFA)表示了自旋-1/2海森堡模型。所考虑的哈密顿量由双线性交换相互作用参数(Jx, Jy, Jz), Dzyaloshinskii-Moriya相互作用(Δx, Δy, Δz)和外部磁场分量(Hx, Hy, Hz)组成。得到了Jx≠Jy≠Jz的各向异性情况下不同配位数q下MFA的磁化强度及其分量,并详细研究了各向异性情况下Jx = Jy = Jz > 0时模型磁化强度的热变化规律,得到了模型的相图。结果表明,该模型具有铁磁、顺磁、随机相区和一个额外的铁磁相区,其中磁化分量呈现分支。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ferromagnetic Heisenberg model with the Dzyaloshinskii-Moriya interaction
The spin-1/2 Heisenberg model is formulated in terms of a mean-field approximation (MFA) by using the matrix forms of spin operators Ŝx, Ŝy and Ŝz in three-dimensions. The considered Hamiltonian consists of bilinear exchange interaction parameters (Jx, Jy, Jz), Dzyaloshinskii-Moriya interactions (Δx, Δy, Δz) and external magnetic field components (Hx, Hy, Hz). The magnetization and its components are obtained in the MFA with the general anisotropic case with Jx ≠ Jy ≠ Jz for various values of coordination numbers q. Then, the thermal variations of magnetizations are investigated in detail to obtain the phase diagrams of the model for the isotropic case with Jx = Jy = Jz > 0. It is found that the model exhibits ferromagnetic, paramagnetic, random phase regions and an extra ferromagnetic phase at which the components of magnetizations present branching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Condensed Matter Physics
Condensed Matter Physics 物理-物理:凝聚态物理
CiteScore
1.10
自引率
16.70%
发文量
17
审稿时长
1 months
期刊介绍: Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信