P. Hariani, Muhammad Said, A. Rachmat, Salni Salni, N. Aprianti, Anisa Fitri Amatullah
{"title":"磁性NiFe2O4/SiO2/NiO的合成及其在紫外光催化降解甲基橙染料中的应用","authors":"P. Hariani, Muhammad Said, A. Rachmat, Salni Salni, N. Aprianti, Anisa Fitri Amatullah","doi":"10.9767/bcrec.17.4.15788.699-711","DOIUrl":null,"url":null,"abstract":"NiFe2O4/SiO2/NiO magnetic was successfully synthesized using NiFe2O4, SiO2, and NiO as the core, interlayer, and shell, respectively. NiFe2O4/SiO2/NiO under UV light irradiation was used for photocatalytic degradation of methyl orange dye with different pH, catalyst dose, and initial dye concentration. This composite was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR), Scanning Electron Microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDs), Vibrating Sample Magnetometer (VSM), UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Point of Zero Charge (pHpzc). The results showed that the composite is a superparamagnetic material with a saturation magnetization value of 44.13 emu/g. It also has a band gap of 2.67 eV with a pHpzc of 6.33. The optimum conditions for photocatalytic degradation were at pH of 4; 0.50 g/L catalyst dose, and 10 mg/L initial concentration. NiFe2O4/SiO2/NiO degradation efficiency to methyl orange dye was 95.76%. The photocatalytic degradation in different concentrations follows the pseudo-first-order, where the greater the concentration, the smaller the constant rate (k). After five cycles of repeated usage, NiFe2O4/SiO2/NiO has good catalytic performance as well as efficient and favourable of a recyclable photocatalyst. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of NiFe2O4/SiO2/NiO Magnetic and Application for the Photocatalytic Degradation of Methyl Orange Dye under UV Irradiation\",\"authors\":\"P. Hariani, Muhammad Said, A. Rachmat, Salni Salni, N. Aprianti, Anisa Fitri Amatullah\",\"doi\":\"10.9767/bcrec.17.4.15788.699-711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NiFe2O4/SiO2/NiO magnetic was successfully synthesized using NiFe2O4, SiO2, and NiO as the core, interlayer, and shell, respectively. NiFe2O4/SiO2/NiO under UV light irradiation was used for photocatalytic degradation of methyl orange dye with different pH, catalyst dose, and initial dye concentration. This composite was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR), Scanning Electron Microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDs), Vibrating Sample Magnetometer (VSM), UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Point of Zero Charge (pHpzc). The results showed that the composite is a superparamagnetic material with a saturation magnetization value of 44.13 emu/g. It also has a band gap of 2.67 eV with a pHpzc of 6.33. The optimum conditions for photocatalytic degradation were at pH of 4; 0.50 g/L catalyst dose, and 10 mg/L initial concentration. NiFe2O4/SiO2/NiO degradation efficiency to methyl orange dye was 95.76%. The photocatalytic degradation in different concentrations follows the pseudo-first-order, where the greater the concentration, the smaller the constant rate (k). After five cycles of repeated usage, NiFe2O4/SiO2/NiO has good catalytic performance as well as efficient and favourable of a recyclable photocatalyst. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).\",\"PeriodicalId\":9366,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.17.4.15788.699-711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.17.4.15788.699-711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Synthesis of NiFe2O4/SiO2/NiO Magnetic and Application for the Photocatalytic Degradation of Methyl Orange Dye under UV Irradiation
NiFe2O4/SiO2/NiO magnetic was successfully synthesized using NiFe2O4, SiO2, and NiO as the core, interlayer, and shell, respectively. NiFe2O4/SiO2/NiO under UV light irradiation was used for photocatalytic degradation of methyl orange dye with different pH, catalyst dose, and initial dye concentration. This composite was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR), Scanning Electron Microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDs), Vibrating Sample Magnetometer (VSM), UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Point of Zero Charge (pHpzc). The results showed that the composite is a superparamagnetic material with a saturation magnetization value of 44.13 emu/g. It also has a band gap of 2.67 eV with a pHpzc of 6.33. The optimum conditions for photocatalytic degradation were at pH of 4; 0.50 g/L catalyst dose, and 10 mg/L initial concentration. NiFe2O4/SiO2/NiO degradation efficiency to methyl orange dye was 95.76%. The photocatalytic degradation in different concentrations follows the pseudo-first-order, where the greater the concentration, the smaller the constant rate (k). After five cycles of repeated usage, NiFe2O4/SiO2/NiO has good catalytic performance as well as efficient and favourable of a recyclable photocatalyst. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).