Philip Saponaro, Wayne Treible, Abhishek Kolagunda, Timothy Chaya, J. Caplan, C. Kambhamettu, R. Wisser
{"title":"DeepXScope:用深度神经网络分割显微镜图像","authors":"Philip Saponaro, Wayne Treible, Abhishek Kolagunda, Timothy Chaya, J. Caplan, C. Kambhamettu, R. Wisser","doi":"10.1109/CVPRW.2017.117","DOIUrl":null,"url":null,"abstract":"High-speed confocal microscopy has shown great promise to yield insights into plant-fungal interactions by allowing for large volumes of leaf tissue to be imaged at high magnification. Currently, segmentation is performed either manually, which is infeasible for large amounts of data, or by developing separate algorithms to extract individual features within the image data. In this work, we propose the use of a single deep convolutional neural network architecture dubbed DeepXScope for automatically segmenting hyphal networks of the fungal pathogen and cell boundaries and stomata of the host plant. DeepXScope is trained on manually annotated images created for each of these structures. We describe experiments that show each individual structure can be accurately extracted automatically using DeepXScope. We anticipate that plant scientists will be able to use this network to automatically extract multiple structures of interest, and we plan to release our tool to the community1.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"2014 1","pages":"843-850"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"DeepXScope: Segmenting Microscopy Images with a Deep Neural Network\",\"authors\":\"Philip Saponaro, Wayne Treible, Abhishek Kolagunda, Timothy Chaya, J. Caplan, C. Kambhamettu, R. Wisser\",\"doi\":\"10.1109/CVPRW.2017.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-speed confocal microscopy has shown great promise to yield insights into plant-fungal interactions by allowing for large volumes of leaf tissue to be imaged at high magnification. Currently, segmentation is performed either manually, which is infeasible for large amounts of data, or by developing separate algorithms to extract individual features within the image data. In this work, we propose the use of a single deep convolutional neural network architecture dubbed DeepXScope for automatically segmenting hyphal networks of the fungal pathogen and cell boundaries and stomata of the host plant. DeepXScope is trained on manually annotated images created for each of these structures. We describe experiments that show each individual structure can be accurately extracted automatically using DeepXScope. We anticipate that plant scientists will be able to use this network to automatically extract multiple structures of interest, and we plan to release our tool to the community1.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"2014 1\",\"pages\":\"843-850\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeepXScope: Segmenting Microscopy Images with a Deep Neural Network
High-speed confocal microscopy has shown great promise to yield insights into plant-fungal interactions by allowing for large volumes of leaf tissue to be imaged at high magnification. Currently, segmentation is performed either manually, which is infeasible for large amounts of data, or by developing separate algorithms to extract individual features within the image data. In this work, we propose the use of a single deep convolutional neural network architecture dubbed DeepXScope for automatically segmenting hyphal networks of the fungal pathogen and cell boundaries and stomata of the host plant. DeepXScope is trained on manually annotated images created for each of these structures. We describe experiments that show each individual structure can be accurately extracted automatically using DeepXScope. We anticipate that plant scientists will be able to use this network to automatically extract multiple structures of interest, and we plan to release our tool to the community1.