用有限场法研究了空间受限LiH分子的线性和非线性电学性质

Wojciech Bartkowiak, Krzysztof Strasburger
{"title":"用有限场法研究了空间受限LiH分子的线性和非线性电学性质","authors":"Wojciech Bartkowiak,&nbsp;Krzysztof Strasburger","doi":"10.1016/j.theochem.2010.08.028","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of spatial confinement on the electric properties: dipole moment (<em>μ</em>), dipole polarizability (<em>α</em>), first hyperpolarizability (<em>β</em>) and second hyperpolarizability (<em>γ</em>) of the LiH molecule was studied. The confining model potential is assumed in the form of a penetrable spherical box. The properties in question were calculated within the finite field approach, with an accurate, explicitly correlated wave function. We found all studied properties diminished under confinement.</p></div>","PeriodicalId":16419,"journal":{"name":"Journal of Molecular Structure-theochem","volume":"960 1","pages":"Pages 93-97"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.theochem.2010.08.028","citationCount":"28","resultStr":"{\"title\":\"Linear and nonlinear electric properties of spatially confined LiH molecule, studied with the finite field method\",\"authors\":\"Wojciech Bartkowiak,&nbsp;Krzysztof Strasburger\",\"doi\":\"10.1016/j.theochem.2010.08.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The influence of spatial confinement on the electric properties: dipole moment (<em>μ</em>), dipole polarizability (<em>α</em>), first hyperpolarizability (<em>β</em>) and second hyperpolarizability (<em>γ</em>) of the LiH molecule was studied. The confining model potential is assumed in the form of a penetrable spherical box. The properties in question were calculated within the finite field approach, with an accurate, explicitly correlated wave function. We found all studied properties diminished under confinement.</p></div>\",\"PeriodicalId\":16419,\"journal\":{\"name\":\"Journal of Molecular Structure-theochem\",\"volume\":\"960 1\",\"pages\":\"Pages 93-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.theochem.2010.08.028\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure-theochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166128010005488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure-theochem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166128010005488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

研究了空间约束对LiH分子电性质的影响:偶极矩(μ)、偶极极化率(α)、第一超极化率(β)和第二超极化率(γ)。围合模型势假定为可穿透的球盒形式。所讨论的性质是在有限场方法内计算的,具有精确的,显式相关的波函数。我们发现所有被研究的性质在约束下都降低了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear and nonlinear electric properties of spatially confined LiH molecule, studied with the finite field method

The influence of spatial confinement on the electric properties: dipole moment (μ), dipole polarizability (α), first hyperpolarizability (β) and second hyperpolarizability (γ) of the LiH molecule was studied. The confining model potential is assumed in the form of a penetrable spherical box. The properties in question were calculated within the finite field approach, with an accurate, explicitly correlated wave function. We found all studied properties diminished under confinement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信