关于三次图非平面性的测度

Q3 Mathematics
L. Plachta
{"title":"关于三次图非平面性的测度","authors":"L. Plachta","doi":"10.15673/TMGC.V11I2.1026","DOIUrl":null,"url":null,"abstract":"We study two measures of nonplanarity of cubic graphs G, the genus γ (G), and the edge deletion number ed(G). For cubic graphs of small orders these parameters are compared with another measure of nonplanarity, the rectilinear crossing number (G). We introduce operations of connected sum, specified for cubic graphs G, and show that under certain conditions the parameters γ(G) and ed(G) are additive (subadditive) with respect to them.The minimal genus graphs (i.e. the cubic graphs of minimum order with given value of genus γ) and the minimal edge deletion graphs (i.e. cubic graphs of minimum order with given value of edge deletion number ed) are introduced and studied. We provide upper bounds for the order of minimal genus and minimal edge deletion graphs.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On measures of nonplanarity of cubic graphs\",\"authors\":\"L. Plachta\",\"doi\":\"10.15673/TMGC.V11I2.1026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study two measures of nonplanarity of cubic graphs G, the genus γ (G), and the edge deletion number ed(G). For cubic graphs of small orders these parameters are compared with another measure of nonplanarity, the rectilinear crossing number (G). We introduce operations of connected sum, specified for cubic graphs G, and show that under certain conditions the parameters γ(G) and ed(G) are additive (subadditive) with respect to them.The minimal genus graphs (i.e. the cubic graphs of minimum order with given value of genus γ) and the minimal edge deletion graphs (i.e. cubic graphs of minimum order with given value of edge deletion number ed) are introduced and studied. We provide upper bounds for the order of minimal genus and minimal edge deletion graphs.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/TMGC.V11I2.1026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V11I2.1026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了三次图G的两种非平面性度量,即格γ (G)和边缺失数ed(G)。对于小阶的三次图,我们将这些参数与另一种非平面性度量,即直线交叉数(G)进行了比较。我们引入了为三次图G指定的连通和运算,并证明在某些条件下,参数γ(G)和ed(G)相对于它们是可加的(次可加的)。引入并研究了最小格图(即具有给定格值γ的最小阶三次图)和最小边缺失图(即具有给定边缺失数ed的最小阶三次图)。我们给出了最小格和最小边缺失图阶的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On measures of nonplanarity of cubic graphs
We study two measures of nonplanarity of cubic graphs G, the genus γ (G), and the edge deletion number ed(G). For cubic graphs of small orders these parameters are compared with another measure of nonplanarity, the rectilinear crossing number (G). We introduce operations of connected sum, specified for cubic graphs G, and show that under certain conditions the parameters γ(G) and ed(G) are additive (subadditive) with respect to them.The minimal genus graphs (i.e. the cubic graphs of minimum order with given value of genus γ) and the minimal edge deletion graphs (i.e. cubic graphs of minimum order with given value of edge deletion number ed) are introduced and studied. We provide upper bounds for the order of minimal genus and minimal edge deletion graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信