slc表面的胶合理论和正特性的三倍

Quentin Posva
{"title":"slc表面的胶合理论和正特性的三倍","authors":"Quentin Posva","doi":"10.2422/2036-2145.202112_010","DOIUrl":null,"url":null,"abstract":"We develop a gluing theory in the sense of Kollár for slc surfaces and threefolds in positive characteristic. For surfaces we are able to deal with every positive characteristic p, while for threefolds we assume that p > 5. Along the way we study nodes in characteristic 2 and establish a theory of sources and springs à la Kollár for threefolds. We also give applications to the topology of lc centers on slc threefolds, and to the projectivity of the moduli space of stable surfaces in characteristic p > 5.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gluing theory for slc surfaces and threefolds in positive characteristic\",\"authors\":\"Quentin Posva\",\"doi\":\"10.2422/2036-2145.202112_010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a gluing theory in the sense of Kollár for slc surfaces and threefolds in positive characteristic. For surfaces we are able to deal with every positive characteristic p, while for threefolds we assume that p > 5. Along the way we study nodes in characteristic 2 and establish a theory of sources and springs à la Kollár for threefolds. We also give applications to the topology of lc centers on slc threefolds, and to the projectivity of the moduli space of stable surfaces in characteristic p > 5.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202112_010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202112_010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对于slc表面和正特性的三倍,我们发展了Kollár意义上的粘合理论。对于曲面,我们可以处理每一个正特征p,而对于三倍曲面,我们假设p > 5。在此过程中,我们研究了特征2中的节点,并建立了三倍的源和弹簧理论 la Kollár。我们也给出了在slc三折上的lc中心拓扑的应用,以及特征p > 5的稳定曲面模空间的投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gluing theory for slc surfaces and threefolds in positive characteristic
We develop a gluing theory in the sense of Kollár for slc surfaces and threefolds in positive characteristic. For surfaces we are able to deal with every positive characteristic p, while for threefolds we assume that p > 5. Along the way we study nodes in characteristic 2 and establish a theory of sources and springs à la Kollár for threefolds. We also give applications to the topology of lc centers on slc threefolds, and to the projectivity of the moduli space of stable surfaces in characteristic p > 5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信