{"title":"教金属-有机框架传导:金属-有机框架中的离子和电子传递","authors":"Ruby A. Kharod, Justin L. Andrews, M. Dincǎ","doi":"10.1146/annurev-matsci-080619-012811","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOFs) are an expansive class of extended solids formed by coordination bonding between metal ions/clusters and organic ligands. Although MOFs are best known for their intrinsic porosity, they are now also emerging as an unusual set of porous, electrical, and ionic conductors that could address a number of applications in energy storage and generation. In this review, we focus on intrinsic ionic conductivity in MOFs and outline approaches for achieving high ionic conductivities. First, we highlight the use of noncoordinating acidic groups to integrate anions into MOF organic linkers. Next, we discuss the use of open metal sites to anchor anions and generate mobile ions. Then, we discuss the use of postsynthetic modifications to graft anions onto ligands and defect sites. Finally, we outline several unexplored approaches to improving ionic conductivity in MOFs and highlight several potential new applications. Expected final online publication date for the Annual Review of Materials Research, Volume 52 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"121 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks\",\"authors\":\"Ruby A. Kharod, Justin L. Andrews, M. Dincǎ\",\"doi\":\"10.1146/annurev-matsci-080619-012811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-organic frameworks (MOFs) are an expansive class of extended solids formed by coordination bonding between metal ions/clusters and organic ligands. Although MOFs are best known for their intrinsic porosity, they are now also emerging as an unusual set of porous, electrical, and ionic conductors that could address a number of applications in energy storage and generation. In this review, we focus on intrinsic ionic conductivity in MOFs and outline approaches for achieving high ionic conductivities. First, we highlight the use of noncoordinating acidic groups to integrate anions into MOF organic linkers. Next, we discuss the use of open metal sites to anchor anions and generate mobile ions. Then, we discuss the use of postsynthetic modifications to graft anions onto ligands and defect sites. Finally, we outline several unexplored approaches to improving ionic conductivity in MOFs and highlight several potential new applications. Expected final online publication date for the Annual Review of Materials Research, Volume 52 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8055,\"journal\":{\"name\":\"Annual Review of Materials Research\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-matsci-080619-012811\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-080619-012811","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks
Metal-organic frameworks (MOFs) are an expansive class of extended solids formed by coordination bonding between metal ions/clusters and organic ligands. Although MOFs are best known for their intrinsic porosity, they are now also emerging as an unusual set of porous, electrical, and ionic conductors that could address a number of applications in energy storage and generation. In this review, we focus on intrinsic ionic conductivity in MOFs and outline approaches for achieving high ionic conductivities. First, we highlight the use of noncoordinating acidic groups to integrate anions into MOF organic linkers. Next, we discuss the use of open metal sites to anchor anions and generate mobile ions. Then, we discuss the use of postsynthetic modifications to graft anions onto ligands and defect sites. Finally, we outline several unexplored approaches to improving ionic conductivity in MOFs and highlight several potential new applications. Expected final online publication date for the Annual Review of Materials Research, Volume 52 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.