使用功能数据分析模型预测年龄特异性脑癌死亡率

K. Pokhrel, C. Tsokos
{"title":"使用功能数据分析模型预测年龄特异性脑癌死亡率","authors":"K. Pokhrel, C. Tsokos","doi":"10.1155/2015/721592","DOIUrl":null,"url":null,"abstract":"Incidence and mortality rates are considered as a guideline for planning public health strategies and allocating resources. We apply functional data analysis techniques to model age-specific brain cancer mortality trend and forecast entire age-specific functions using exponential smoothing state-space models. The age-specific mortality curves are decomposed using principal component analysis and fit functional time series model with basis functions. Nonparametric smoothing methods are used to mitigate the existing randomness in the observed data. We use functional time series model on age-specific brain cancer mortality rates and forecast mortality curves with prediction intervals using exponential smoothing state-space model. We also present a disparity of brain cancer mortality rates among the age groups together with the rate of change of mortality rates. The data were obtained from the Surveillance, Epidemiology and End Results (SEER) program of the United States. The brain cancer mortality rates, classified under International Classification Disease code ICD-O-3, were extracted from SEERStat software.","PeriodicalId":91644,"journal":{"name":"Advances in epidemiology","volume":"36 5 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Forecasting Age-Specific Brain Cancer Mortality Rates Using Functional Data Analysis Models\",\"authors\":\"K. Pokhrel, C. Tsokos\",\"doi\":\"10.1155/2015/721592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incidence and mortality rates are considered as a guideline for planning public health strategies and allocating resources. We apply functional data analysis techniques to model age-specific brain cancer mortality trend and forecast entire age-specific functions using exponential smoothing state-space models. The age-specific mortality curves are decomposed using principal component analysis and fit functional time series model with basis functions. Nonparametric smoothing methods are used to mitigate the existing randomness in the observed data. We use functional time series model on age-specific brain cancer mortality rates and forecast mortality curves with prediction intervals using exponential smoothing state-space model. We also present a disparity of brain cancer mortality rates among the age groups together with the rate of change of mortality rates. The data were obtained from the Surveillance, Epidemiology and End Results (SEER) program of the United States. The brain cancer mortality rates, classified under International Classification Disease code ICD-O-3, were extracted from SEERStat software.\",\"PeriodicalId\":91644,\"journal\":{\"name\":\"Advances in epidemiology\",\"volume\":\"36 5 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/721592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/721592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

发病率和死亡率被视为规划公共卫生战略和分配资源的准则。我们应用功能数据分析技术对特定年龄的脑癌死亡率趋势进行建模,并使用指数平滑状态空间模型预测整个特定年龄的函数。采用主成分分析法对年龄死亡率曲线进行分解,并拟合带有基函数的函数时间序列模型。采用非参数平滑方法减轻观测数据中存在的随机性。我们使用函数时间序列模型对年龄特异性脑癌死亡率进行预测,并使用指数平滑状态空间模型预测具有预测区间的死亡率曲线。我们还展示了不同年龄组之间脑癌死亡率的差异以及死亡率的变化率。数据来自美国的监测、流行病学和最终结果(SEER)项目。根据国际疾病分类代码ICD-O-3分类的脑癌死亡率从SEERStat软件中提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Age-Specific Brain Cancer Mortality Rates Using Functional Data Analysis Models
Incidence and mortality rates are considered as a guideline for planning public health strategies and allocating resources. We apply functional data analysis techniques to model age-specific brain cancer mortality trend and forecast entire age-specific functions using exponential smoothing state-space models. The age-specific mortality curves are decomposed using principal component analysis and fit functional time series model with basis functions. Nonparametric smoothing methods are used to mitigate the existing randomness in the observed data. We use functional time series model on age-specific brain cancer mortality rates and forecast mortality curves with prediction intervals using exponential smoothing state-space model. We also present a disparity of brain cancer mortality rates among the age groups together with the rate of change of mortality rates. The data were obtained from the Surveillance, Epidemiology and End Results (SEER) program of the United States. The brain cancer mortality rates, classified under International Classification Disease code ICD-O-3, were extracted from SEERStat software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信