{"title":"ql构型的(2,3)环面分解","authors":"M. Kawashima, Kenta Yoshizaki","doi":"10.55937/sut/1279305513","DOIUrl":null,"url":null,"abstract":"Let $Q$ be an affine quartic which does not intersect transversely with the line at infinity $L_{\\infty}$. In this paper, we show the existence of a $(2,3)$ torus decomposition of the defining polynomial of $Q$ and its uniqueness except for one class.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On (2,3) torus decompositions of QL-congurations\",\"authors\":\"M. Kawashima, Kenta Yoshizaki\",\"doi\":\"10.55937/sut/1279305513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $Q$ be an affine quartic which does not intersect transversely with the line at infinity $L_{\\\\infty}$. In this paper, we show the existence of a $(2,3)$ torus decomposition of the defining polynomial of $Q$ and its uniqueness except for one class.\",\"PeriodicalId\":38708,\"journal\":{\"name\":\"SUT Journal of Mathematics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUT Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55937/sut/1279305513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1279305513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Let $Q$ be an affine quartic which does not intersect transversely with the line at infinity $L_{\infty}$. In this paper, we show the existence of a $(2,3)$ torus decomposition of the defining polynomial of $Q$ and its uniqueness except for one class.