{"title":"Brieskorn完全交点的加权齐次曲面奇异同胚","authors":"Tomohiro Okuma","doi":"10.5427/jsing.2021.23j","DOIUrl":null,"url":null,"abstract":"For a given topological type of a normal surface singularity, there are various types of complex structures which realize it. We are interested in the following problem: Find the maximum of the geometric genus and a condition for that the maximal ideal cycle coincides with the undamental cycle on the minimal good resolution. In this paper, we study weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersection singularities from the perspective of the problem.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersections\",\"authors\":\"Tomohiro Okuma\",\"doi\":\"10.5427/jsing.2021.23j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a given topological type of a normal surface singularity, there are various types of complex structures which realize it. We are interested in the following problem: Find the maximum of the geometric genus and a condition for that the maximal ideal cycle coincides with the undamental cycle on the minimal good resolution. In this paper, we study weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersection singularities from the perspective of the problem.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2021.23j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2021.23j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersections
For a given topological type of a normal surface singularity, there are various types of complex structures which realize it. We are interested in the following problem: Find the maximum of the geometric genus and a condition for that the maximal ideal cycle coincides with the undamental cycle on the minimal good resolution. In this paper, we study weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersection singularities from the perspective of the problem.