{"title":"拓扑有序多体定域系统运动的局部积分","authors":"T. Wahl, B. B'eri","doi":"10.1103/PHYSREVRESEARCH.2.033099","DOIUrl":null,"url":null,"abstract":"Many-body localized (MBL) systems are often described using their local integrals of motion, which, for spin systems, are commonly assumed to be a local unitary transform of the set of on-site spin-z operators. We show that this assumption cannot hold for topologically ordered MBL systems. Using a suitable definition to capture such systems in any spatial dimension, we demonstrate a number of features, including that MBL topological order, if present: (i) is the same for all eigenstates; (ii) is robust in character against any perturbation preserving MBL; (iii) implies that on topologically nontrivial manifolds a complete set of integrals of motion must include nonlocal ones in the form of local-unitary-dressed noncontractible Wilson loops. Our approach is well suited for tensor-network methods, and is expected to allow these to resolve highly-excited finite-size-split topological eigenspaces despite their overlap in energy. We illustrate our approach on the disordered Kitaev chain, toric code, and X-cube model.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Local integrals of motion for topologically ordered many-body localized systems\",\"authors\":\"T. Wahl, B. B'eri\",\"doi\":\"10.1103/PHYSREVRESEARCH.2.033099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many-body localized (MBL) systems are often described using their local integrals of motion, which, for spin systems, are commonly assumed to be a local unitary transform of the set of on-site spin-z operators. We show that this assumption cannot hold for topologically ordered MBL systems. Using a suitable definition to capture such systems in any spatial dimension, we demonstrate a number of features, including that MBL topological order, if present: (i) is the same for all eigenstates; (ii) is robust in character against any perturbation preserving MBL; (iii) implies that on topologically nontrivial manifolds a complete set of integrals of motion must include nonlocal ones in the form of local-unitary-dressed noncontractible Wilson loops. Our approach is well suited for tensor-network methods, and is expected to allow these to resolve highly-excited finite-size-split topological eigenspaces despite their overlap in energy. We illustrate our approach on the disordered Kitaev chain, toric code, and X-cube model.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.2.033099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.2.033099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local integrals of motion for topologically ordered many-body localized systems
Many-body localized (MBL) systems are often described using their local integrals of motion, which, for spin systems, are commonly assumed to be a local unitary transform of the set of on-site spin-z operators. We show that this assumption cannot hold for topologically ordered MBL systems. Using a suitable definition to capture such systems in any spatial dimension, we demonstrate a number of features, including that MBL topological order, if present: (i) is the same for all eigenstates; (ii) is robust in character against any perturbation preserving MBL; (iii) implies that on topologically nontrivial manifolds a complete set of integrals of motion must include nonlocal ones in the form of local-unitary-dressed noncontractible Wilson loops. Our approach is well suited for tensor-network methods, and is expected to allow these to resolve highly-excited finite-size-split topological eigenspaces despite their overlap in energy. We illustrate our approach on the disordered Kitaev chain, toric code, and X-cube model.