{"title":"一价调和函数的无约束优化","authors":"Wadhah Abdulelah Hussein, Huda Amer Abdul Ameer","doi":"10.24237/djps.1803.583b","DOIUrl":null,"url":null,"abstract":"The new generalized operator F 𝜈,𝛿m , is a conjunction between Unconstrained optimization and Univalent Harmonic Functions.We derived some properties by this conjunction like, coefficient inequality, convex set, apply Bernardi operator and determine the extreme points such that ∑ ∞𝔫=1 (𝜔 𝔫 + 𝜗 𝔫 ) = 1, (𝜔 𝔫 ≥ 0 , 𝜗 𝔫 ≥ 0). In particular, the extreme points of 𝑁𝛿 𝑢∗ ( 𝛽, 𝛾, 𝜇; 𝑛, 𝜆) are { ℎ 𝔫 } and { 𝑔 𝔫 }","PeriodicalId":11231,"journal":{"name":"Diyala Journal for Pure Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconstrained Optimization of Univalent Harmonic Functions\",\"authors\":\"Wadhah Abdulelah Hussein, Huda Amer Abdul Ameer\",\"doi\":\"10.24237/djps.1803.583b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new generalized operator F 𝜈,𝛿m , is a conjunction between Unconstrained optimization and Univalent Harmonic Functions.We derived some properties by this conjunction like, coefficient inequality, convex set, apply Bernardi operator and determine the extreme points such that ∑ ∞𝔫=1 (𝜔 𝔫 + 𝜗 𝔫 ) = 1, (𝜔 𝔫 ≥ 0 , 𝜗 𝔫 ≥ 0). In particular, the extreme points of 𝑁𝛿 𝑢∗ ( 𝛽, 𝛾, 𝜇; 𝑛, 𝜆) are { ℎ 𝔫 } and { 𝑔 𝔫 }\",\"PeriodicalId\":11231,\"journal\":{\"name\":\"Diyala Journal for Pure Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diyala Journal for Pure Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24237/djps.1803.583b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diyala Journal for Pure Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24237/djps.1803.583b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unconstrained Optimization of Univalent Harmonic Functions
The new generalized operator F 𝜈,𝛿m , is a conjunction between Unconstrained optimization and Univalent Harmonic Functions.We derived some properties by this conjunction like, coefficient inequality, convex set, apply Bernardi operator and determine the extreme points such that ∑ ∞𝔫=1 (𝜔 𝔫 + 𝜗 𝔫 ) = 1, (𝜔 𝔫 ≥ 0 , 𝜗 𝔫 ≥ 0). In particular, the extreme points of 𝑁𝛿 𝑢∗ ( 𝛽, 𝛾, 𝜇; 𝑛, 𝜆) are { ℎ 𝔫 } and { 𝑔 𝔫 }