具有控制约束的高度非光滑优化问题的强平稳性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Livia M. Betz
{"title":"具有控制约束的高度非光滑优化问题的强平稳性","authors":"Livia M. Betz","doi":"10.3934/mcrf.2022047","DOIUrl":null,"url":null,"abstract":"This paper deals with a control constrained optimization problem governed by a nonsmooth elliptic PDE in the presence of a non-differentiable objective. The nonsmooth non-linearity in the state equation is locally Lipschitz continuous and directionally differentiable, while one of the nonsmooth terms appearing in the objective is convex. Since these mappings are not necessarily Gâteaux-differentiable, the application of standard adjoint calculus is excluded. Based on their limited differentiability properties, we derive a strong stationary optimality system, i.e., an optimality system which is equivalent to the purely primal optimality condition saying that the directional derivative of the reduced objective in feasible directions is nonnegative.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Strong stationarity for a highly nonsmooth optimization problem with control constraints\",\"authors\":\"Livia M. Betz\",\"doi\":\"10.3934/mcrf.2022047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a control constrained optimization problem governed by a nonsmooth elliptic PDE in the presence of a non-differentiable objective. The nonsmooth non-linearity in the state equation is locally Lipschitz continuous and directionally differentiable, while one of the nonsmooth terms appearing in the objective is convex. Since these mappings are not necessarily Gâteaux-differentiable, the application of standard adjoint calculus is excluded. Based on their limited differentiability properties, we derive a strong stationary optimality system, i.e., an optimality system which is equivalent to the purely primal optimality condition saying that the directional derivative of the reduced objective in feasible directions is nonnegative.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022047\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

研究了一类具有不可微目标的非光滑椭圆偏微分方程控制约束优化问题。状态方程中的非光滑非线性是局部Lipschitz连续且方向可微的,而目标中出现的一个非光滑项是凸的。由于这些映射不一定是g teaux可微的,因此排除了标准伴随微积分的应用。基于它们的有限可微性,我们导出了一个强平稳最优性系统,即等价于简化目标在可行方向上的方向导数为非负的纯原始最优性条件的最优性系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong stationarity for a highly nonsmooth optimization problem with control constraints
This paper deals with a control constrained optimization problem governed by a nonsmooth elliptic PDE in the presence of a non-differentiable objective. The nonsmooth non-linearity in the state equation is locally Lipschitz continuous and directionally differentiable, while one of the nonsmooth terms appearing in the objective is convex. Since these mappings are not necessarily Gâteaux-differentiable, the application of standard adjoint calculus is excluded. Based on their limited differentiability properties, we derive a strong stationary optimality system, i.e., an optimality system which is equivalent to the purely primal optimality condition saying that the directional derivative of the reduced objective in feasible directions is nonnegative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信