任务图的分治最小切切分

S. Lor, Hong Shen, P. Maheshwari
{"title":"任务图的分治最小切切分","authors":"S. Lor, Hong Shen, P. Maheshwari","doi":"10.1109/MPCS.1994.367082","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for partitioning the vertex set of an undirected simple weighted graph into two subsets so as to minimise the difference of vertex-weight sums between the two subsets and the total weight of edges cut (i.e., edges with one end in each subset). The proposed heuristic algorithm works in a divide-and-conquer fashion and is a modification of an algorithm suggested in the literature. The algorithm has the same time complexity as the previous one but is extended to work on weighted graphs.<<ETX>>","PeriodicalId":64175,"journal":{"name":"专用汽车","volume":"5 1","pages":"155-162"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Divide-and-conquer minimal-cut bisectioning of task graphs\",\"authors\":\"S. Lor, Hong Shen, P. Maheshwari\",\"doi\":\"10.1109/MPCS.1994.367082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for partitioning the vertex set of an undirected simple weighted graph into two subsets so as to minimise the difference of vertex-weight sums between the two subsets and the total weight of edges cut (i.e., edges with one end in each subset). The proposed heuristic algorithm works in a divide-and-conquer fashion and is a modification of an algorithm suggested in the literature. The algorithm has the same time complexity as the previous one but is extended to work on weighted graphs.<<ETX>>\",\"PeriodicalId\":64175,\"journal\":{\"name\":\"专用汽车\",\"volume\":\"5 1\",\"pages\":\"155-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"专用汽车\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/MPCS.1994.367082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"专用汽车","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/MPCS.1994.367082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种将无向简单加权图的顶点集划分为两个子集的方法,使两个子集的顶点权值和与被切边(即每个子集中有一端的边)的总权值之差最小。提出的启发式算法以分而治之的方式工作,是对文献中建议的算法的修改。该算法具有与前一算法相同的时间复杂度,但被扩展到对加权图的处理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divide-and-conquer minimal-cut bisectioning of task graphs
This paper proposes a method for partitioning the vertex set of an undirected simple weighted graph into two subsets so as to minimise the difference of vertex-weight sums between the two subsets and the total weight of edges cut (i.e., edges with one end in each subset). The proposed heuristic algorithm works in a divide-and-conquer fashion and is a modification of an algorithm suggested in the literature. The algorithm has the same time complexity as the previous one but is extended to work on weighted graphs.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8000
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信