H2分子在NiTi(001)表面解离吸附的密度泛函理论研究

IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY
R. Arifin, A. Selamat, R. Asih, Darminto, M. Malyadi, W. Putra
{"title":"H2分子在NiTi(001)表面解离吸附的密度泛函理论研究","authors":"R. Arifin, A. Selamat, R. Asih, Darminto, M. Malyadi, W. Putra","doi":"10.1177/23977914221114557","DOIUrl":null,"url":null,"abstract":"Ti-based alloys have the potential to be used as hydrogen storage units, including NiTi. In contrast, NiTi alloy is sensitive to H atoms. It has been found that hydrogen can cause embrittlement in NiTi alloys. Thus, it is become indispensable to elucidate the reaction of H2 molecules on the NiTi surface. Using density functional theory, we investigated the dissociation mechanism of H2 molecules on the B2 NiTi (001) surface. We found that H atoms tend to come closer to Ni atoms on the Ti- and Ni-terminated (NiTi) (001) substrate. The calculation results showed that the adsorption energy of H atoms at the hollow site was higher than that at the top site. We identified two dissociation mechanisms of H2 molecules on Ti and Ni terminated on NiTi (001) substrates via the hollow sites of the adsorption route. The adsorption energy values obtained were extremely low, that is, 0.23 and 0.38 eV for the Ni and Ti terminated of NiTi (001) substrates, respectively. The dissociation reaction of H2 molecules, which is an exothermic reaction, can quickly occur on the NiTi (001) surface because of the low activation energy.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Density functional theory study of dissociative adsorption of H2 molecules on NiTi (001) surfaces\",\"authors\":\"R. Arifin, A. Selamat, R. Asih, Darminto, M. Malyadi, W. Putra\",\"doi\":\"10.1177/23977914221114557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ti-based alloys have the potential to be used as hydrogen storage units, including NiTi. In contrast, NiTi alloy is sensitive to H atoms. It has been found that hydrogen can cause embrittlement in NiTi alloys. Thus, it is become indispensable to elucidate the reaction of H2 molecules on the NiTi surface. Using density functional theory, we investigated the dissociation mechanism of H2 molecules on the B2 NiTi (001) surface. We found that H atoms tend to come closer to Ni atoms on the Ti- and Ni-terminated (NiTi) (001) substrate. The calculation results showed that the adsorption energy of H atoms at the hollow site was higher than that at the top site. We identified two dissociation mechanisms of H2 molecules on Ti and Ni terminated on NiTi (001) substrates via the hollow sites of the adsorption route. The adsorption energy values obtained were extremely low, that is, 0.23 and 0.38 eV for the Ni and Ti terminated of NiTi (001) substrates, respectively. The dissociation reaction of H2 molecules, which is an exothermic reaction, can quickly occur on the NiTi (001) surface because of the low activation energy.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23977914221114557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221114557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

钛基合金有潜力被用作储氢单元,包括NiTi。相比之下,NiTi合金对H原子敏感。研究发现,氢能引起NiTi合金的脆性。因此,阐明H2分子在NiTi表面的反应就变得必不可少。利用密度泛函理论,研究了H2分子在B2 NiTi(001)表面的解离机理。我们发现,在Ti端和Ni端(NiTi)(001)衬底上,H原子倾向于靠近Ni原子。计算结果表明,空心位置的H原子吸附能高于顶部位置。我们确定了H2分子在Ti和Ni上的两种解离机制,通过吸附路线的中空位点终止在NiTi(001)底物上。所得吸附能极低,NiTi(001)底物的Ni端和Ti端分别为0.23 eV和0.38 eV。H2分子的解离反应是一种放热反应,由于其活化能较低,可以在NiTi(001)表面快速发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density functional theory study of dissociative adsorption of H2 molecules on NiTi (001) surfaces
Ti-based alloys have the potential to be used as hydrogen storage units, including NiTi. In contrast, NiTi alloy is sensitive to H atoms. It has been found that hydrogen can cause embrittlement in NiTi alloys. Thus, it is become indispensable to elucidate the reaction of H2 molecules on the NiTi surface. Using density functional theory, we investigated the dissociation mechanism of H2 molecules on the B2 NiTi (001) surface. We found that H atoms tend to come closer to Ni atoms on the Ti- and Ni-terminated (NiTi) (001) substrate. The calculation results showed that the adsorption energy of H atoms at the hollow site was higher than that at the top site. We identified two dissociation mechanisms of H2 molecules on Ti and Ni terminated on NiTi (001) substrates via the hollow sites of the adsorption route. The adsorption energy values obtained were extremely low, that is, 0.23 and 0.38 eV for the Ni and Ti terminated of NiTi (001) substrates, respectively. The dissociation reaction of H2 molecules, which is an exothermic reaction, can quickly occur on the NiTi (001) surface because of the low activation energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信