基于大数据分析的大型燃气发动机实时失火检测

J. Z. Szabó, P. Bakucz
{"title":"基于大数据分析的大型燃气发动机实时失火检测","authors":"J. Z. Szabó, P. Bakucz","doi":"10.1109/SISY.2018.8524725","DOIUrl":null,"url":null,"abstract":"In this work application of fuzzy deep learning algorithm to classify vibration signals of a Deutz MWM 8 cylinder large gas engine is presented. The main contribution is to identify the misfire characteristics in realtime embedded microcontroller environment. The substance of the scheduled fuzzy system is a stratified deep neural network that obtains information from both fuzzy and neural representations. The misfire characteristics learnt from these two various views are convolved, forming the ultimate signal to be classified.","PeriodicalId":6647,"journal":{"name":"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"49 1","pages":"000215-000220"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-Time Misfire Detection of Large Gas Engine Using Big Data Analytics\",\"authors\":\"J. Z. Szabó, P. Bakucz\",\"doi\":\"10.1109/SISY.2018.8524725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work application of fuzzy deep learning algorithm to classify vibration signals of a Deutz MWM 8 cylinder large gas engine is presented. The main contribution is to identify the misfire characteristics in realtime embedded microcontroller environment. The substance of the scheduled fuzzy system is a stratified deep neural network that obtains information from both fuzzy and neural representations. The misfire characteristics learnt from these two various views are convolved, forming the ultimate signal to be classified.\",\"PeriodicalId\":6647,\"journal\":{\"name\":\"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"49 1\",\"pages\":\"000215-000220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2018.8524725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2018.8524725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了模糊深度学习算法在Deutz mwm8缸大型燃气发动机振动信号分类中的应用。本文的主要贡献是识别了实时嵌入式微控制器环境下的失火特性。调度模糊系统的实质是一个分层的深度神经网络,它从模糊和神经表示中获取信息。从这两种不同的观点中学习到的失火特征被卷积,形成最终的分类信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Misfire Detection of Large Gas Engine Using Big Data Analytics
In this work application of fuzzy deep learning algorithm to classify vibration signals of a Deutz MWM 8 cylinder large gas engine is presented. The main contribution is to identify the misfire characteristics in realtime embedded microcontroller environment. The substance of the scheduled fuzzy system is a stratified deep neural network that obtains information from both fuzzy and neural representations. The misfire characteristics learnt from these two various views are convolved, forming the ultimate signal to be classified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信