Khuram Khalid, I. Woungang, S. K. Dhurandher, Jagdeep Singh, L. Barolli
{"title":"一种基于模糊的机会网络检测-喷射地质广播路由协议","authors":"Khuram Khalid, I. Woungang, S. K. Dhurandher, Jagdeep Singh, L. Barolli","doi":"10.3233/JHS-210648","DOIUrl":null,"url":null,"abstract":"Unlike communication networks which are traditionally assumed to be connected, Opportunistic networks (OppNets) are a type of wireless ad hoc networks with no guarantee of end-to-end path for data routing, which is due to node mobility, volatile links, and frequent disconnections. As such, data transmission among the nodes relies on their cooperation and this is realized in a store-and-carry fashion. To this end, several opportunistic routing techniques have been proposed in the literature, some of which using geocasting, a technique that consists of scheduling the message to a specific region toward its destination. This paper proposes a Fuzzy-based Check-and-Spray Geocast (FCSG) routing protocol for OppNets, in which a Check-and-Spray mechanism is used to control the message flooding within the destination cast and a fuzzy controller is used for selecting the suitable relay nodes to carry the message toward the destination, with the aim to improve the delivery ratio. Using simulations, the proposed FCSG protocol is shown to outperform the F-GSAF, GeoEpidemic and EECSG routing protocols in terms of overhead ratio, average latency, and delivery ratio, under varying number of nodes, buffer size, and Time-to-Live.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"17 1","pages":"1-12"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A fuzzy-based check-and-spray geocast routing protocol for opportunistic networks\",\"authors\":\"Khuram Khalid, I. Woungang, S. K. Dhurandher, Jagdeep Singh, L. Barolli\",\"doi\":\"10.3233/JHS-210648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike communication networks which are traditionally assumed to be connected, Opportunistic networks (OppNets) are a type of wireless ad hoc networks with no guarantee of end-to-end path for data routing, which is due to node mobility, volatile links, and frequent disconnections. As such, data transmission among the nodes relies on their cooperation and this is realized in a store-and-carry fashion. To this end, several opportunistic routing techniques have been proposed in the literature, some of which using geocasting, a technique that consists of scheduling the message to a specific region toward its destination. This paper proposes a Fuzzy-based Check-and-Spray Geocast (FCSG) routing protocol for OppNets, in which a Check-and-Spray mechanism is used to control the message flooding within the destination cast and a fuzzy controller is used for selecting the suitable relay nodes to carry the message toward the destination, with the aim to improve the delivery ratio. Using simulations, the proposed FCSG protocol is shown to outperform the F-GSAF, GeoEpidemic and EECSG routing protocols in terms of overhead ratio, average latency, and delivery ratio, under varying number of nodes, buffer size, and Time-to-Live.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"17 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/JHS-210648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JHS-210648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A fuzzy-based check-and-spray geocast routing protocol for opportunistic networks
Unlike communication networks which are traditionally assumed to be connected, Opportunistic networks (OppNets) are a type of wireless ad hoc networks with no guarantee of end-to-end path for data routing, which is due to node mobility, volatile links, and frequent disconnections. As such, data transmission among the nodes relies on their cooperation and this is realized in a store-and-carry fashion. To this end, several opportunistic routing techniques have been proposed in the literature, some of which using geocasting, a technique that consists of scheduling the message to a specific region toward its destination. This paper proposes a Fuzzy-based Check-and-Spray Geocast (FCSG) routing protocol for OppNets, in which a Check-and-Spray mechanism is used to control the message flooding within the destination cast and a fuzzy controller is used for selecting the suitable relay nodes to carry the message toward the destination, with the aim to improve the delivery ratio. Using simulations, the proposed FCSG protocol is shown to outperform the F-GSAF, GeoEpidemic and EECSG routing protocols in terms of overhead ratio, average latency, and delivery ratio, under varying number of nodes, buffer size, and Time-to-Live.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.