{"title":"不完全网络下闭环工业应用的性能评价","authors":"Sándor Rácz, G. Szabó, József Peto","doi":"10.36244/icj.2019.2.4","DOIUrl":null,"url":null,"abstract":"5G networks provide technology enablers targeting industrial applications. One key enabler is the Ultra Reliable Low Latency Communication (URLLC). This paper studies the performance impact of network delay on closed-loop control for industrial applications. We investigate the performance of the closed-loop control of an UR5 industrial robot arm assuming fix delay. The goal is to stress the system at the upper limit of the possible network delay. We prove that to achieve the maximum speed, URLLC is a must have.","PeriodicalId":42504,"journal":{"name":"Infocommunications Journal","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance Evaluation of Closed-loop Industrial Applications Over Imperfect Networks\",\"authors\":\"Sándor Rácz, G. Szabó, József Peto\",\"doi\":\"10.36244/icj.2019.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5G networks provide technology enablers targeting industrial applications. One key enabler is the Ultra Reliable Low Latency Communication (URLLC). This paper studies the performance impact of network delay on closed-loop control for industrial applications. We investigate the performance of the closed-loop control of an UR5 industrial robot arm assuming fix delay. The goal is to stress the system at the upper limit of the possible network delay. We prove that to achieve the maximum speed, URLLC is a must have.\",\"PeriodicalId\":42504,\"journal\":{\"name\":\"Infocommunications Journal\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infocommunications Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36244/icj.2019.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infocommunications Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/icj.2019.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Performance Evaluation of Closed-loop Industrial Applications Over Imperfect Networks
5G networks provide technology enablers targeting industrial applications. One key enabler is the Ultra Reliable Low Latency Communication (URLLC). This paper studies the performance impact of network delay on closed-loop control for industrial applications. We investigate the performance of the closed-loop control of an UR5 industrial robot arm assuming fix delay. The goal is to stress the system at the upper limit of the possible network delay. We prove that to achieve the maximum speed, URLLC is a must have.