基于机器学习的药物设计:支持向量机用于药物数据分析

R. Burbidge, M. Trotter, B. Buxton, S. Holden
{"title":"基于机器学习的药物设计:支持向量机用于药物数据分析","authors":"R. Burbidge,&nbsp;M. Trotter,&nbsp;B. Buxton,&nbsp;S. Holden","doi":"10.1016/S0097-8485(01)00094-8","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the support vector machine (SVM) classification algorithm, a recent development from the machine learning community, proves its potential for structure–activity relationship analysis. In a benchmark test, the SVM is compared to several machine learning techniques currently used in the field. The classification task involves predicting the inhibition of dihydrofolate reductase by pyrimidines, using data obtained from the UCI machine learning repository. Three artificial neural networks, a radial basis function network, and a C5.0 decision tree are all outperformed by the SVM. The SVM is significantly better than all of these, bar a manually capacity-controlled neural network, which takes considerably longer to train.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 1","pages":"Pages 5-14"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00094-8","citationCount":"620","resultStr":"{\"title\":\"Drug design by machine learning: support vector machines for pharmaceutical data analysis\",\"authors\":\"R. Burbidge,&nbsp;M. Trotter,&nbsp;B. Buxton,&nbsp;S. Holden\",\"doi\":\"10.1016/S0097-8485(01)00094-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the support vector machine (SVM) classification algorithm, a recent development from the machine learning community, proves its potential for structure–activity relationship analysis. In a benchmark test, the SVM is compared to several machine learning techniques currently used in the field. The classification task involves predicting the inhibition of dihydrofolate reductase by pyrimidines, using data obtained from the UCI machine learning repository. Three artificial neural networks, a radial basis function network, and a C5.0 decision tree are all outperformed by the SVM. The SVM is significantly better than all of these, bar a manually capacity-controlled neural network, which takes considerably longer to train.</p></div>\",\"PeriodicalId\":79331,\"journal\":{\"name\":\"Computers & chemistry\",\"volume\":\"26 1\",\"pages\":\"Pages 5-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00094-8\",\"citationCount\":\"620\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097848501000948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501000948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 620

摘要

我们展示了支持向量机(SVM)分类算法,这是机器学习社区的最新发展,证明了它在结构-活动关系分析方面的潜力。在基准测试中,将支持向量机与该领域目前使用的几种机器学习技术进行了比较。分类任务包括预测嘧啶对二氢叶酸还原酶的抑制作用,使用从UCI机器学习存储库获得的数据。三种人工神经网络、一种径向基函数网络和一种C5.0决策树均优于支持向量机。支持向量机明显优于所有这些,除了人工控制容量的神经网络,这需要相当长的时间来训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drug design by machine learning: support vector machines for pharmaceutical data analysis

We show that the support vector machine (SVM) classification algorithm, a recent development from the machine learning community, proves its potential for structure–activity relationship analysis. In a benchmark test, the SVM is compared to several machine learning techniques currently used in the field. The classification task involves predicting the inhibition of dihydrofolate reductase by pyrimidines, using data obtained from the UCI machine learning repository. Three artificial neural networks, a radial basis function network, and a C5.0 decision tree are all outperformed by the SVM. The SVM is significantly better than all of these, bar a manually capacity-controlled neural network, which takes considerably longer to train.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信