基于立体视觉和语义信息的自动驾驶实时三维目标检测

Hendrik Königshof, Niels Ole Salscheider, C. Stiller
{"title":"基于立体视觉和语义信息的自动驾驶实时三维目标检测","authors":"Hendrik Königshof, Niels Ole Salscheider, C. Stiller","doi":"10.1109/ITSC.2019.8917330","DOIUrl":null,"url":null,"abstract":"We propose a 3D object detection and pose estimation method for automated driving using stereo images. In contrast to existing stereo-based approaches, we focus not only on cars, but on all types of road users and can ensure real-time capability through GPU implementation of the entire processing chain. These are essential conditions to exploit an algorithm for highly automated driving. Semantic information is provided by a deep convolutional neural network and used together with disparity and geometric constraints to recover accurate 3D bounding boxes. Experiments on the challenging KITTI 3D object detection benchmark show results that are within the range of the best image-based algorithms, while the runtime is only about a fifth. This makes our algorithm the first real-time image-based approach on KITTI.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"40 11 1","pages":"1405-1410"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information\",\"authors\":\"Hendrik Königshof, Niels Ole Salscheider, C. Stiller\",\"doi\":\"10.1109/ITSC.2019.8917330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a 3D object detection and pose estimation method for automated driving using stereo images. In contrast to existing stereo-based approaches, we focus not only on cars, but on all types of road users and can ensure real-time capability through GPU implementation of the entire processing chain. These are essential conditions to exploit an algorithm for highly automated driving. Semantic information is provided by a deep convolutional neural network and used together with disparity and geometric constraints to recover accurate 3D bounding boxes. Experiments on the challenging KITTI 3D object detection benchmark show results that are within the range of the best image-based algorithms, while the runtime is only about a fifth. This makes our algorithm the first real-time image-based approach on KITTI.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"40 11 1\",\"pages\":\"1405-1410\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

提出了一种基于立体图像的自动驾驶三维目标检测和姿态估计方法。与现有的基于立体的方法相比,我们不仅关注汽车,还关注所有类型的道路使用者,并通过GPU实现整个处理链来确保实时性。这些都是开发高度自动驾驶算法的必要条件。语义信息由深度卷积神经网络提供,并与视差和几何约束一起用于恢复精确的三维边界框。在具有挑战性的KITTI 3D目标检测基准上的实验表明,结果在最佳基于图像的算法的范围内,而运行时间仅为约五分之一。这使得我们的算法成为KITTI上第一个基于实时图像的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information
We propose a 3D object detection and pose estimation method for automated driving using stereo images. In contrast to existing stereo-based approaches, we focus not only on cars, but on all types of road users and can ensure real-time capability through GPU implementation of the entire processing chain. These are essential conditions to exploit an algorithm for highly automated driving. Semantic information is provided by a deep convolutional neural network and used together with disparity and geometric constraints to recover accurate 3D bounding boxes. Experiments on the challenging KITTI 3D object detection benchmark show results that are within the range of the best image-based algorithms, while the runtime is only about a fifth. This makes our algorithm the first real-time image-based approach on KITTI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信