N. Johansson, Y.-P. Eric Wang, Erik Eriksson, Martin Hessler
{"title":"用于超可靠和低延迟5G通信的无线接入","authors":"N. Johansson, Y.-P. Eric Wang, Erik Eriksson, Martin Hessler","doi":"10.1109/ICCW.2015.7247338","DOIUrl":null,"url":null,"abstract":"Fifth generation wireless networks are currently being developed to handle a wide range of new use cases. One important emerging area is ultra-reliable communication with guaranteed low latencies well beyond what current wireless technologies can provide. In this paper, we explore the viability of using wireless communication for low-latency, high-reliability communication in an example scenario of factory automation, and outline important design choices for such a system. We show that it is possible to achieve very low error rates and latencies over a radio channel, also when considering fast fading signal and interference, channel estimation errors, and antenna correlation. The most important tool to ensure high reliability is diversity, and low latency is achieved by using short transmission intervals without retransmissions, which, however, introduces a natural restriction on coverage area.","PeriodicalId":6464,"journal":{"name":"2015 IEEE International Conference on Communication Workshop (ICCW)","volume":"19 1","pages":"1184-1189"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"199","resultStr":"{\"title\":\"Radio access for ultra-reliable and low-latency 5G communications\",\"authors\":\"N. Johansson, Y.-P. Eric Wang, Erik Eriksson, Martin Hessler\",\"doi\":\"10.1109/ICCW.2015.7247338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fifth generation wireless networks are currently being developed to handle a wide range of new use cases. One important emerging area is ultra-reliable communication with guaranteed low latencies well beyond what current wireless technologies can provide. In this paper, we explore the viability of using wireless communication for low-latency, high-reliability communication in an example scenario of factory automation, and outline important design choices for such a system. We show that it is possible to achieve very low error rates and latencies over a radio channel, also when considering fast fading signal and interference, channel estimation errors, and antenna correlation. The most important tool to ensure high reliability is diversity, and low latency is achieved by using short transmission intervals without retransmissions, which, however, introduces a natural restriction on coverage area.\",\"PeriodicalId\":6464,\"journal\":{\"name\":\"2015 IEEE International Conference on Communication Workshop (ICCW)\",\"volume\":\"19 1\",\"pages\":\"1184-1189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"199\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Communication Workshop (ICCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2015.7247338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Workshop (ICCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2015.7247338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Radio access for ultra-reliable and low-latency 5G communications
Fifth generation wireless networks are currently being developed to handle a wide range of new use cases. One important emerging area is ultra-reliable communication with guaranteed low latencies well beyond what current wireless technologies can provide. In this paper, we explore the viability of using wireless communication for low-latency, high-reliability communication in an example scenario of factory automation, and outline important design choices for such a system. We show that it is possible to achieve very low error rates and latencies over a radio channel, also when considering fast fading signal and interference, channel estimation errors, and antenna correlation. The most important tool to ensure high reliability is diversity, and low latency is achieved by using short transmission intervals without retransmissions, which, however, introduces a natural restriction on coverage area.