基于对比评价网络的弱监督时间动作定位

Zi-yi Liu, Le Wang, Qilin Zhang, Zhanning Gao, Zhenxing Niu, N. Zheng, G. Hua
{"title":"基于对比评价网络的弱监督时间动作定位","authors":"Zi-yi Liu, Le Wang, Qilin Zhang, Zhanning Gao, Zhenxing Niu, N. Zheng, G. Hua","doi":"10.1109/ICCV.2019.00400","DOIUrl":null,"url":null,"abstract":"Weakly-supervised temporal action localization (WS-TAL) is a promising but challenging task with only video-level action categorical labels available during training. Without requiring temporal action boundary annotations in training data, WS-TAL could possibly exploit automatically retrieved video tags as video-level labels. However, such coarse video-level supervision inevitably incurs confusions, especially in untrimmed videos containing multiple action instances. To address this challenge, we propose the Contrast-based Localization EvaluAtioN Network (CleanNet) with our new action proposal evaluator, which provides pseudo-supervision by leveraging the temporal contrast in snippet-level action classification predictions. Essentially, the new action proposal evaluator enforces an additional temporal contrast constraint so that high-evaluation-score action proposals are more likely to coincide with true action instances. Moreover, the new action localization module is an integral part of CleanNet which enables end-to-end training. This is in contrast to many existing WS-TAL methods where action localization is merely a post-processing step. Experiments on THUMOS14 and ActivityNet datasets validate the efficacy of CleanNet against existing state-ofthe- art WS-TAL algorithms.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"106 1","pages":"3898-3907"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":"{\"title\":\"Weakly Supervised Temporal Action Localization Through Contrast Based Evaluation Networks\",\"authors\":\"Zi-yi Liu, Le Wang, Qilin Zhang, Zhanning Gao, Zhenxing Niu, N. Zheng, G. Hua\",\"doi\":\"10.1109/ICCV.2019.00400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weakly-supervised temporal action localization (WS-TAL) is a promising but challenging task with only video-level action categorical labels available during training. Without requiring temporal action boundary annotations in training data, WS-TAL could possibly exploit automatically retrieved video tags as video-level labels. However, such coarse video-level supervision inevitably incurs confusions, especially in untrimmed videos containing multiple action instances. To address this challenge, we propose the Contrast-based Localization EvaluAtioN Network (CleanNet) with our new action proposal evaluator, which provides pseudo-supervision by leveraging the temporal contrast in snippet-level action classification predictions. Essentially, the new action proposal evaluator enforces an additional temporal contrast constraint so that high-evaluation-score action proposals are more likely to coincide with true action instances. Moreover, the new action localization module is an integral part of CleanNet which enables end-to-end training. This is in contrast to many existing WS-TAL methods where action localization is merely a post-processing step. Experiments on THUMOS14 and ActivityNet datasets validate the efficacy of CleanNet against existing state-ofthe- art WS-TAL algorithms.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"106 1\",\"pages\":\"3898-3907\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"102\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

摘要

弱监督时态动作定位(WS-TAL)是一个很有前途但具有挑战性的任务,在训练过程中只有视频级别的动作分类标签可用。在训练数据中不需要临时动作边界注释,WS-TAL就可以利用自动检索的视频标记作为视频级标签。然而,这种粗糙的视频级监督不可避免地会造成混乱,特别是在包含多个动作实例的未经修剪的视频中。为了解决这一挑战,我们提出了基于对比的定位评估网络(CleanNet)和我们的新动作建议评估器,它通过利用片段级动作分类预测中的时间对比提供伪监督。从本质上讲,新的操作建议评估器强制执行了额外的时间对比约束,以便高评估分数的操作建议更有可能与真实的操作实例相一致。此外,新的动作定位模块是CleanNet的一个组成部分,可以实现端到端的培训。这与许多现有的WS-TAL方法形成对比,在这些方法中,操作本地化仅仅是一个后处理步骤。在THUMOS14和ActivityNet数据集上的实验验证了CleanNet对现有最先进的WS-TAL算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly Supervised Temporal Action Localization Through Contrast Based Evaluation Networks
Weakly-supervised temporal action localization (WS-TAL) is a promising but challenging task with only video-level action categorical labels available during training. Without requiring temporal action boundary annotations in training data, WS-TAL could possibly exploit automatically retrieved video tags as video-level labels. However, such coarse video-level supervision inevitably incurs confusions, especially in untrimmed videos containing multiple action instances. To address this challenge, we propose the Contrast-based Localization EvaluAtioN Network (CleanNet) with our new action proposal evaluator, which provides pseudo-supervision by leveraging the temporal contrast in snippet-level action classification predictions. Essentially, the new action proposal evaluator enforces an additional temporal contrast constraint so that high-evaluation-score action proposals are more likely to coincide with true action instances. Moreover, the new action localization module is an integral part of CleanNet which enables end-to-end training. This is in contrast to many existing WS-TAL methods where action localization is merely a post-processing step. Experiments on THUMOS14 and ActivityNet datasets validate the efficacy of CleanNet against existing state-ofthe- art WS-TAL algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信